OpenCV2机器学习库MLL
学习机器学习的时候,基本都是在用Matlab、Python写算法,做测试;
由于最近要用OpenCV写作业,兴起看了看opencv的机器学习模块(The Machine Learning Library——MLL)。
来看看MLL的主要构成:Statistical Model是个基类,下面的K-NN、SVM等都是其子类。
不太喜欢这个Statistical定语,Statistics在ML界横行的好多年,感觉温度已经降下来了。
来看下Statistical Model:
- class CV_EXPORTS_W CvStatModel
- {
- public:
- CvStatModel();
- virtual ~CvStatModel();
- virtual void clear();
- CV_WRAP virtual void save( const char* filename, const char* name=0 ) const;
- CV_WRAP virtual void load( const char* filename, const char* name=0 );
- virtual void write( CvFileStorage* storage, const char* name ) const;
- virtual void read( CvFileStorage* storage, CvFileNode* node );
- virtual bool train(const Mat& train_data, const Mat& responses, Mat(), Mat(), CVParms params );
- virtual float predict(const Mat& sample, ...);
- protected:
- const char* default_model_name;
- };
void CvStatModel::save() /load() 保存/加载文件和模型;
void CvStatModel:read()
/write() 读写文件和模型;
bool CvStatModel::train() 训练模型;
float CvStatModel::predict() 预测样本结果;
那么朴素贝叶斯、K-近邻、支持向量机、决策树等类都是继承CVStatModel;
使用这些方法的基本框架就是:
Method.train(train_data, responses, Mat(), Mat(), params);
Method.predict(sampleMat);
======================================================
一个具体的例子<Support
Vector Machines for Non-Linearly Separable Data>
- #include <iostream>
- #include <opencv2/core/core.hpp>
- #include <opencv2/highgui/highgui.hpp>
- #include <opencv2/ml/ml.hpp>
- #define NTRAINING_SAMPLES 100 // Number of training samples per class
- #define FRAC_LINEAR_SEP 0.9f // Fraction of samples which compose the linear separable part
- using namespace cv;
- using namespace std;
- void help()
- {
- cout<< "\n--------------------------------------------------------------------------" << endl
- << "This program shows Support Vector Machines for Non-Linearly Separable Data. " << endl
- << "Usage:" << endl
- << "./non_linear_svms" << endl
- << "--------------------------------------------------------------------------" << endl
- << endl;
- }
- int main()
- {
- help();
- // Data for visual representation
- const int WIDTH = 512, HEIGHT = 512;
- Mat I = Mat::zeros(HEIGHT, WIDTH, CV_8UC3);
- //--------------------- 1. Set up training data randomly ---------------------------------------
- Mat trainData(2*NTRAINING_SAMPLES, 2, CV_32FC1);
- Mat labels (2*NTRAINING_SAMPLES, 1, CV_32FC1);
- RNG rng(100); // Random value generation class
- // Set up the linearly separable part of the training data
- int nLinearSamples = (int) (FRAC_LINEAR_SEP * NTRAINING_SAMPLES);
- // Generate random points for the class 1
- Mat trainClass = trainData.rowRange(0, nLinearSamples);
- // The x coordinate of the points is in [0, 0.4)
- Mat c = trainClass.colRange(0, 1);
- rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(0.4 * WIDTH));
- // The y coordinate of the points is in [0, 1)
- c = trainClass.colRange(1,2);
- rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
- // Generate random points for the class 2
- trainClass = trainData.rowRange(2*NTRAINING_SAMPLES-nLinearSamples, 2*NTRAINING_SAMPLES);
- // The x coordinate of the points is in [0.6, 1]
- c = trainClass.colRange(0 , 1);
- rng.fill(c, RNG::UNIFORM, Scalar(0.6*WIDTH), Scalar(WIDTH));
- // The y coordinate of the points is in [0, 1)
- c = trainClass.colRange(1,2);
- rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
- //------------------ Set up the non-linearly separable part of the training data ---------------
- // Generate random points for the classes 1 and 2
- trainClass = trainData.rowRange( nLinearSamples, 2*NTRAINING_SAMPLES-nLinearSamples);
- // The x coordinate of the points is in [0.4, 0.6)
- c = trainClass.colRange(0,1);
- rng.fill(c, RNG::UNIFORM, Scalar(0.4*WIDTH), Scalar(0.6*WIDTH));
- // The y coordinate of the points is in [0, 1)
- c = trainClass.colRange(1,2);
- rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
- //------------------------- Set up the labels for the classes ---------------------------------
- labels.rowRange( 0, NTRAINING_SAMPLES).setTo(1); // Class 1
- labels.rowRange(NTRAINING_SAMPLES, 2*NTRAINING_SAMPLES).setTo(2); // Class 2
- //------------------------ 2. Set up the support vector machines parameters --------------------
- CvSVMParams params;
- params.svm_type = SVM::C_SVC;
- params.C = 0.1;
- params.kernel_type = SVM::LINEAR;
- params.term_crit = TermCriteria(CV_TERMCRIT_ITER, (int)1e7, 1e-6);
- //------------------------ 3. Train the svm ----------------------------------------------------
- cout << "Starting training process" << endl;
- CvSVM svm;
- svm.train(trainData, labels, Mat(), Mat(), params);
- cout << "Finished training process" << endl;
- //------------------------ 4. Show the decision regions ----------------------------------------
- Vec3b green(0,100,0), blue (100,0,0);
- for (int i = 0; i < I.rows; ++i)
- for (int j = 0; j < I.cols; ++j)
- {
- Mat sampleMat = (Mat_<float>(1,2) << i, j);
- float response = svm.predict(sampleMat);
- if (response == 1) I.at<Vec3b>(j, i) = green;
- else if (response == 2) I.at<Vec3b>(j, i) = blue;
- }
- //----------------------- 5. Show the training data --------------------------------------------
- int thick = -1;
- int lineType = 8;
- float px, py;
- // Class 1
- for (int i = 0; i < NTRAINING_SAMPLES; ++i)
- {
- px = trainData.at<float>(i,0);
- py = trainData.at<float>(i,1);
- circle(I, Point( (int) px, (int) py ), 3, Scalar(0, 255, 0), thick, lineType);
- }
- // Class 2
- for (int i = NTRAINING_SAMPLES; i <2*NTRAINING_SAMPLES; ++i)
- {
- px = trainData.at<float>(i,0);
- py = trainData.at<float>(i,1);
- circle(I, Point( (int) px, (int) py ), 3, Scalar(255, 0, 0), thick, lineType);
- }
- //------------------------- 6. Show support vectors --------------------------------------------
- thick = 2;
- lineType = 8;
- int x = svm.get_support_vector_count();
- for (int i = 0; i < x; ++i)
- {
- const float* v = svm.get_support_vector(i);
- circle( I, Point( (int) v[0], (int) v[1]), 6, Scalar(128, 128, 128), thick, lineType);
- }
- imwrite("result.png", I); // save the Image
- imshow("SVM for Non-Linear Training Data", I); // show it to the user
- waitKey(0);
- }
结果: