鼠标操作事件,截取摄像头视频中区域,图片预处理,识别数字
- 通过回调函数截取摄像头视频感兴趣区域(仪器数字区域),并进行预处理,然后识别,代码如下
- 效果图如下
//鼠标操作事件,截取摄像头视频中区域,识别图片
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2\imgproc\imgproc.hpp>
#include <stdio.h>
#include <iostream>
#include "baseapi.h"
using namespace cv;
using namespace std;
cv::Mat frame,frame1,dst,img,tmp,imageEnhance;
int ImgNum = 40;
char ImagesName[100];
#pragma comment(lib,"libtesseract302d.lib")
void on_mouse(int event,int x,int y,int flags,void *ustc);
Mat disposeimg(Mat imgsrc);
void main()
{
VideoCapture cap(0);
if(!cap.isOpened())
{
printf("error");
return;
}
cap.set(CV_CAP_PROP_FRAME_WIDTH,1200);
cap.set(CV_CAP_PROP_FRAME_HEIGHT,900);
//cap.set(CV_CAP_PROP_BRIGHTNESS,10);
//printf("brightness = %.2f\n", cap.get(CV_CAP_PROP_BRIGHTNESS));
while(1)
{
cap>>frame;
flip(frame,frame1,-1);
frame1.copyTo(img);
frame1.copyTo(tmp);
waitKey(50);
namedWindow("img");//定义一个img窗口
setMouseCallback("img",on_mouse,0);//调用回调函数
imshow("img",img);
if(27==waitKey(30))//按ESC键退出
break;
}
cap.release();
}
void on_mouse(int event,int x,int y,int flags,void *ustc)//event鼠标事件代号,x,y鼠标坐标,flags拖拽和键盘操作的代号
{
static Point pre_pt = (-1,-1);//初始坐标
static Point cur_pt = (-1,-1);//实时坐标
char temp[16];
if (event == CV_EVENT_LBUTTONDOWN)//左键按下,读取初始坐标,并在图像上该点处划圆
{
frame1.copyTo(img);//将原始图片复制到img中
sprintf(temp,"(%d,%d)",x,y);
//cout<<x<<endl<<y<<endl;
pre_pt = Point(x,y);
// putText(img,temp,pre_pt,FONT_HERSHEY_SIMPLEX,0.5,Scalar(0,0,0,255),1,8);//在窗口上显示坐标
circle(img,pre_pt,2,Scalar(255,0,0,0),CV_FILLED,CV_AA,0);//划圆
//imshow("img",img);
}
/*
else if (event == CV_EVENT_MOUSEMOVE && !(flags & CV_EVENT_FLAG_LBUTTON))//左键没有按下的情况下鼠标移动的处理函数
{
img.copyTo(tmp);//将img复制到临时图像tmp上,用于显示实时坐标
sprintf(temp,"(%d,%d)",x,y);
cur_pt = Point(x,y);
putText(tmp,temp,cur_pt,FONT_HERSHEY_SIMPLEX,0.5,Scalar(0,0,0,255));//只是实时显示鼠标移动的坐标
imshow("img",tmp);
}
*/
else if (event == CV_EVENT_MOUSEMOVE && (flags & CV_EVENT_FLAG_LBUTTON))//左键按下时,鼠标移动,则在图像上划矩形
{
img.copyTo(tmp);
sprintf(temp,"(%d,%d)",x,y);
cur_pt = Point(x,y);
putText(tmp,temp,cur_pt,FONT_HERSHEY_SIMPLEX,0.5,Scalar(0,0,0,255));
rectangle(tmp,pre_pt,cur_pt,Scalar(0,255,0,0),1,8,0);//在临时图像上实时显示鼠标拖动时形成的矩形
imshow("img",tmp);
}
else if (event == CV_EVENT_LBUTTONUP)//左键松开,将在图像上划矩形
{
frame1.copyTo(img);
sprintf(temp,"(%d,%d)",x,y);
cur_pt = Point(x,y);
//putText(img,temp,cur_pt,FONT_HERSHEY_SIMPLEX,0.5,Scalar(0,0,0,255));
circle(img,pre_pt,2,Scalar(255,0,0,0),CV_FILLED,CV_AA,0);
rectangle(img,pre_pt,cur_pt,Scalar(0,255,0,0),1,8,0);//根据初始点和结束点,将矩形画到img上
imshow("img",img);
img.copyTo(tmp);
//截取矩形包围的图像,并保存到dst中
int width = abs(pre_pt.x - cur_pt.x);
int height = abs(pre_pt.y - cur_pt.y);
if (width == 0 || height == 0)
{
printf("width == 0 || height == 0");
return;
}
ImgNum=ImgNum+1;
dst = frame1(Rect(min(cur_pt.x,pre_pt.x),min(cur_pt.y,pre_pt.y),width,height));
sprintf_s(ImagesName, "%s%.2d%s", "C:/Users/hzaihua/Desktop/mid1/", ImgNum, ".jpg");
//imwrite(ImagesName,dst);
// namedWindow("dst");
//imshow("dst",dst);
//imwrite("30.jpg",dst);
Mat dst1=disposeimg(dst);//5636-0和5636-1预处理
//imwrite(ImagesName,dst1);
//imshow("dst1",dst1);
imwrite(ImagesName,dst1);
//imageEnhance=image_enhance(dst);
//imwrite(ImagesName,dst);
//数字识别
tesseract::TessBaseAPI api;
//api.Init(NULL, "eng", tesseract::OEM_DEFAULT);//初始化,设置语言包
api.Init(NULL, "num", tesseract::OEM_DEFAULT);//初始化,设置语言包
api.SetVariable("tessedit_char_whitelist", ".0123456789dB=LFSIp");//白名单过滤
STRING text_out;
const char* p = ImagesName;
api.ProcessPages(p, NULL, 0, &text_out);
int conf = api.MeanTextConf();
//cout<<ImagesName<<endl;
//cout<<conf<<" "<<text_out.string()<<endl;
cout<<text_out.string()<<endl;
// waitKey(0);
}
/*
else if(!(flags))//鼠标没有按下
{
frame1.copyTo(img);
cur_pt = Point(x,y);
putText(tmp,temp,cur_pt,FONT_HERSHEY_SIMPLEX,0.5,Scalar(0,0,0,255));//只是实时显示鼠标移动的坐标
pre_pt.x=985;pre_pt.y=566;
cur_pt.x=1147;cur_pt.y=628;
int width = abs(pre_pt.x - cur_pt.x);
int height = abs(pre_pt.y - cur_pt.y);
ImgNum=ImgNum+1;
dst = frame1(Rect(min(cur_pt.x,pre_pt.x),min(cur_pt.y,pre_pt.y),width,height));
sprintf_s(ImagesName, "%s%.2d%s", "C:/Users/hzaihua/Desktop/mid1/", ImgNum, ".jpg");
Mat dst1=disposeimg(dst);
imshow("dst1",dst1);
imwrite(ImagesName,dst1);
//imageEnhance=image_enhance(dst);
//imwrite(ImagesName,dst);
//数字识别
tesseract::TessBaseAPI api;
//api.Init(NULL, "eng", tesseract::OEM_DEFAULT);//初始化,设置语言包
api.Init(NULL, "num", tesseract::OEM_DEFAULT);//初始化,设置语言包
api.SetVariable("tessedit_char_whitelist", ".0123456789");//白名单过滤
STRING text_out;
const char* p = ImagesName;
api.ProcessPages(p, NULL, 0, &text_out);
//cout<<ImagesName<<endl;
cout<<text_out.string()<<endl;
}
*/
}
//图像预处理
Mat disposeimg(Mat imgsrc)
{
Mat imageLog(imgsrc.size(), CV_32FC3);
for (int i = 0; i < imgsrc.rows; i++)
{
for (int j = 0; j <imgsrc.cols; j++)
{
imageLog.at<Vec3f>(i, j)[0] = log(float(1+ imgsrc.at<Vec3b>(i, j)[0]));
imageLog.at<Vec3f>(i, j)[1] = log(float(1+ imgsrc.at<Vec3b>(i, j)[1]));
imageLog.at<Vec3f>(i, j)[2] = log(float(1 + imgsrc.at<Vec3b>(i, j)[2]));
}
}
// 用到的图像增强算法可参考 https://blog.****.net/dcrmg/article/details/53677739
//归一化到0~255
normalize(imageLog, imageLog, 0, 255, CV_MINMAX);
//转换成8bit图像显示
convertScaleAbs(imageLog, imageLog);
imshow("i",imageLog);
Mat gray;
cvtColor(imageLog,gray,COLOR_RGB2GRAY);
Mat otsu2_image,otsu1_image,otsu_image,gray1;
//threshold(gray, otsu_image, 105, 255, CV_THRESH_BINARY);
cv::adaptiveThreshold(gray, otsu_image,255,ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY,91,0);
//腐蚀
Mat erode_image;
Mat element2 = getStructuringElement(MORPH_CROSS, Size(3, 3));
erode(otsu_image, erode_image, element2);
Mat dst;
GaussianBlur(erode_image, dst, Size(3, 3),0);
return dst;
}