多载波MIMO信道下的波束成形设计

#subtitle: 检测理论概述 #副标题
header-img: img/post-web.jpg #这篇文章标题背景图片
catalog: true # 是否归档
tags: #标签
- 信息与通信
- 通信系统
- 宽带无线通信


1. Multicarrier Communication & OFDM

Multicarrier Communication & OFDM

2. Majority Theory & Schur Convex Analysis

2.1 向量的受控关系

2.1.1 受控关系的定义

Definition1: (x↓和x↑) x∈R^n,将x=(x_1, x_2…x_n)的各个分量排成递减和递增后,记作:
多载波MIMO信道下的波束成形设计

Definition2(受控关系): x,y∈R^n, e_1, e_2…e_n 为R^n上的单位向量,则:
(1). 若∃k=1…n-1,
多载波MIMO信道下的波束成形设计

称x被y控制,记作x≺y。特别的,若x不是y的重排,称x被y严格控制,记作x≺≺y
注意:不同于x≤y, x≺y中x,y的分量顺序无关紧要,只与分量的大小有关。

2.1.2 受控关系举例

Eg1: R是一个n*n厄米矩阵,其对角元素构成向量d,其特征值构成向量c,则d≺c
Eg2: x为任意n维向量,x1为x的均值向量,则x1≺x

2.2 Schur凸函数和凹函数

Definition3(Schur-convex): f:R^n→R满足:
∀x,y∈R^n x≺y→f(x)≤f(y)
称f是Schur凸函数,若:
∀x,y∈R^n x≺y→f(x)≥f(y)
称f是Schur凹函数。

3. Signal Model

3.1 Carrier-noncooperative approach - Channel

We consider a communication system with ????_???? transmit and ????_???? receive dimensions. To deal easily with the frequency-selectivity of the channel, we take a multicarrier approach without loss of optimality:
多载波MIMO信道下的波束成形设计
多载波MIMO信道下的波束成形设计
多载波MIMO信道下的波束成形设计

3.2 Carrier-noncooperative approach - Sender

The transmitted vector at the k-th carrier after linear precoding can be described:
多载波MIMO信道下的波束成形设计

3.3 Carrier-noncooperative approach - Receiver

The received vector at the k-th carrier after the equalizer is:
多载波MIMO信道下的波束成形设计

3.4 Comprehension

多载波MIMO信道下的波束成形设计
多载波MIMO信道下的波束成形设计

3.5 Carrier-cooperative approach

多载波MIMO信道下的波束成形设计
多载波MIMO信道下的波束成形设计

4. Optimality of Receive Matrix of the Channel-diagonalizing Structure

4.1 Instruction

In general, it is a complicated nonconvex problem, but for some specific design criteria, the original complicated problem is greatly simplified.
Because the channel turns out to be diagonalized by the transmit-receive processing, which allows a scalarization of the problem.

4.1.1 Optimal criteria

  • the minimization of the sum of the MSEs of all channel spatial substreams
  • the minimization of the determinant of the MSE matrix
  • the maximization of the mutual information
  • the minimization of the average/maximum BER
  • the maximization of the minimum SINR
  • etc…

4.1.2 Optimal Functions:

we consider that the design is based on the minimization of some arbitrary objective function of the MSEs of all channel substreams:
多载波MIMO信道下的波束成形设计
????_0 is an indicator of how well the system performs. Objective function ????_0 must be increasing in each one of its arguments.

4.2 MSE Optimization

多载波MIMO信道下的波束成形设计
多载波MIMO信道下的波束成形设计

4.3 BER/ Optimization

many objective functions are naturally expressed as functions of the SINR of each substream. The SINR at the k-th carrier and the i-th spatial substream is:
多载波MIMO信道下的波束成形设计
Maximizing the SINR is clearly equivalent to minimizing the MSE.
The performance of a digital communication system is ultimately given by the fraction of bits in error or bit error rate (BER):

多载波MIMO信道下的波束成形设计
Where k is the number of bits per symbol, and M is the constellation size.
It can be proved that the BER and the corresponding Chernoff upper bound are convex decreasing functions of the SINR and convex increasing functions of the MSE.

4.4 Lemmas of In/Decreasing

4.4.1 BER-SINR

  • Lemma1: BER is convex decreasing functions of the SINR.
    多载波MIMO信道下的波束成形设计
    多载波MIMO信道下的波束成形设计

4.4.2 Chernoff upper bound-SINR

  • Lemma2: Chernoff upper bound is convex decreasing functions of the SINR.
    多载波MIMO信道下的波束成形设计
    多载波MIMO信道下的波束成形设计

4.4.3 BER-MSE

  • Lemma3: BER is convex increasing functions of the MSE.
    多载波MIMO信道下的波束成形设计
    To prove that the BER is convex increasing in the MSE, it suffices to show that the first and second derivatives are both positive :
    多载波MIMO信道下的波束成形设计
    where the zeros are
    多载波MIMO信道下的波束成形设计
    It is remarkable that for ????=1, both zeros coincide, which means that the BER function is convex for the whole range of MSE values. Otherwise, BER is convex increasing of the MSE only when
    多载波MIMO信道下的波束成形设计

4.4.4 Chernoff upper bound BER- MSE

  • Lemma4: Chernoff upper bound BER is convex increasing functions of the MSE.
    多载波MIMO信道下的波束成形设计
    To prove that the Chernoff upper bound of BER is convex increasing in the MSE, it suffices to show that the first and second derivatives are both positive :
    多载波MIMO信道下的波束成形设计
    BER is convex increasing of the MSE only when
    多载波MIMO信道下的波束成形设计

4.4.5 Conclusion

Lemma5: The exact BER function and the Chernoff upper bound are indeed convex in the MSE for a BER.
Lemma6: Wiener filter has been obtained as the optimum linear receiver in the sense that it minimizes each of the MSEs, maximizes each of the SINRs, and minimizes each of the BERs

Proof: From Lemma1-4, lemma5,6 is obvious.
多载波MIMO信道下的波束成形设计

5. Optimality of Transmit Matrix of the Channel-diagonalizing Structure

5.1 Question described

多载波MIMO信道下的波束成形设计
多载波MIMO信道下的波束成形设计

5.2 Lemmas for Optimal Matrix

5.2.1 Rank Lemma

多载波MIMO信道下的波束成形设计

5.2.2 Lemma for the exact Matrix

多载波MIMO信道下的波束成形设计
多载波MIMO信道下的波束成形设计

5.3 Optimal Expect Value

多载波MIMO信道下的波束成形设计

5.4 Optimal MSE

多载波MIMO信道下的波束成形设计

5.5 Optimal SINR

多载波MIMO信道下的波束成形设计

5.6 Design Suggestion via SINR

多载波MIMO信道下的波束成形设计
多载波MIMO信道下的波束成形设计

5.7 Schur-convex case

Lemma3-5 are the results of a Schur-concave ????_0
多载波MIMO信道下的波束成形设计

5.8 Conclusion & Multicarrier case

Conclusion of a single carrier:

  • For Schur-concave functions, the specific power distribution among the established substreams will depend on the particular objective function ????_0. Interestingly.
  • For Schur-convex functions, the power distribution is independent of the specific choice of ????_0 since both the MSE expression and the rotation matrix to make the diagonal elements of the MSE matrix equal are independent of ????_0

Here question comes with a multicarrier case:
多载波MIMO信道下的波束成形设计

6. Joint TX-RX Beamforming Design

6.1 Optimal Criteria

多载波MIMO信道下的波束成形设计
Now the Optimal criteria:

  • the minimization of the sum of the MSEs of all channel spatial substreams
  • the minimization of the determinant of the MSE matrix
  • the maximization of the mutual information
  • the minimization of the average/maximum BER
  • the maximization of the minimum SINR

is specified in practical.

6.2 ARITH-MSE

The minimization of the (weighted) arithmetic mean of the MSEs (ARITH-MSE) :
The objective function is
多载波MIMO信道下的波束成形设计
Lemma1: The function is minimized when the weights are in increasing order , and it is then a Schur-concave function.
The problem in convex form (the objective is convex and the constraints linear):
多载波MIMO信道下的波束成形设计
the solution
多载波MIMO信道下的波束成形设计
the solution has a nice water-filling interpretation.

6.3 GEOM-MSE

the minimization of the weighted geometric mean of the MSEs (GEOM-MSE) :
The objective function is
多载波MIMO信道下的波束成形设计
Lemma2: The function is minimized when the weights are in increasing order , and it is then a Schur-concave function on each carrier k.
The problem in convex form (the objective is convex and the constraints linear):
多载波MIMO信道下的波束成形设计
the solution
多载波MIMO信道下的波束成形设计

6.4 MAX-MSE

minimize the maximum of the MSEs (MAX-MSE) :
The objective function is
多载波MIMO信道下的波束成形设计
Lemma3: The function is a Schur-convex function.
The problem in convex form (the objective is linear and the constraints convex):
多载波MIMO信道下的波束成形设计
the solution
多载波MIMO信道下的波束成形设计

6.5 ARITH-SINR

minimized for the maximization of the (weighted) arithmetic mean of the SINRs (ARITH-SINR) :
The objective function is
多载波MIMO信道下的波束成形设计
It can be expressed as a function of MSEs:
多载波MIMO信道下的波束成形设计
Lemma4: The function is minimized when the weights are in increasing order , and it is then a Schur-concave function.
The problem in convex form (the objective is linear and the constraints convex):
多载波MIMO信道下的波束成形设计
the solution is to allocate all the available power to the substream with maximum weighted gain, which has extremely poor spectral efficiency.

6.6 GEOM-SINR

minimized for the maximization of the (weighted) geometric mean of the SINRs (GEOM-SINR) :
The objective function is
多载波MIMO信道下的波束成形设计
It can be expressed as a function of MSEs:
多载波MIMO信道下的波束成形设计
Lemma5: The function is minimized when the weights are in increasing order , and it is then a Schur-concave function.
The problem in convex form (the objective is linear and the constraints convex):
多载波MIMO信道下的波束成形设计
the solution is
多载波MIMO信道下的波束成形设计

6.7 HARM-SINR

maximization of the harmonic mean of the SINRs (HARM-SINR) :
The objective function is
多载波MIMO信道下的波束成形设计
It can be expressed as a function of MSEs:
多载波MIMO信道下的波束成形设计
Lemma6: The function is a Schur-convex function.
The problem in convex form (the objective is linear and the constraints convex):
多载波MIMO信道下的波束成形设计
the solution is
多载波MIMO信道下的波束成形设计