十分钟搞定pandas(二)
合并
连接
pandas提供各种工具以简便合并序列,数据桢,和组合对象, 在连接/合并类型操作中使用多种类型索引和相关数学函数.
请参阅合并部分
把pandas对象连接到一起
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
In [73]: df = pd.DataFrame(np.random.randn(10, 4))
In [74]: df
Out[74]:
0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495
# break it into pieces
In [75]: pieces = [df[:3], df[3:7], df[7:]]
In [76]: pd.concat(pieces)
Out[76]:
0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495
|
连接
SQL样式合并. 请参阅 数据库style联接
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
In[77]:left=pd.DataFrame({'key':['foo','foo'],'lval':[1,2]})
In[78]:right=pd.DataFrame({'key':['foo','foo'],'rval':[4,5]})
In[79]:left
Out[79]:
key lval
0 foo 1
1 foo 2
In[80]:right
Out[80]:
key rval
0 foo 4
1 foo 5
In[81]:pd.merge(left,right,on='key')
Out[81]:
key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5
|
添加
添加行到数据增. 参阅 添加
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
In [82]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])
In [83]: df
Out[83]:
A B C D
0 1.346061 1.511763 1.627081 -0.990582
1 -0.441652 1.211526 0.268520 0.024580
2 -1.577585 0.396823 -0.105381 -0.532532
3 1.453749 1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346 0.339969 -0.693205
5 -0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451
7 -0.096701 0.803351 1.715071 -0.708758
In [84]: s = df.iloc[3]
In [85]: df.append(s, ignore_index=True)
Out[85]:
A B C D
0 1.346061 1.511763 1.627081 -0.990582
1 -0.441652 1.211526 0.268520 0.024580
2 -1.577585 0.396823 -0.105381 -0.532532
3 1.453749 1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346 0.339969 -0.693205
5 -0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451
7 -0.096701 0.803351 1.715071 -0.708758
8 1.453749 1.208843 -0.080952 -0.264610
|
分组
对于“group by”指的是以下一个或多个处理
- 将数据按某些标准分割为不同的组
- 在每个独立组上应用函数
- 组合结果为一个数据结构
请参阅 分组部分
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
In[86]:df=pd.DataFrame({'A':['foo','bar','foo','bar',
....: 'foo','bar','foo','foo'],
....: 'B':['one','one','two','three',
....: 'two','two','one','three'],
....: 'C':np.random.randn(8),
....: 'D':np.random.randn(8)})
....:
In[87]:df
Out[87]:
A B C D
0 foo one-1.202872-0.055224
1 bar one-1.814470 2.395985
2 foo two 1.018601 1.552825
3 bar three-0.595447 0.166599
4 foo two 1.395433 0.047609
5 bar two-0.392670-0.136473
6 foo one 0.007207-0.561757
7 foo three 1.928123-1.623033
|
分组然后应用函数统计总和存放到结果组
1
2
3
4
5
6
|
In [88]: df.groupby('A').sum()
Out[88]:
C D
A
bar -2.802588 2.42611
foo 3.146492 -0.63958
|
按多列分组为层次索引,然后应用函数
1
2
3
4
5
6
7
8
9
10
|
In[89]:df.groupby(['A','B']).sum()
Out[89]:
C D
A B
barone -1.814470 2.395985
three-0.595447 0.166599
two -0.392670-0.136473
fooone -1.195665-0.616981
three 1.928123-1.623033
two 2.414034 1.600434
|
重塑
堆叠
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
In [90]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
....: 'foo', 'foo', 'qux', 'qux'],
....: ['one', 'two', 'one', 'two',
....: 'one', 'two', 'one', 'two']]))
....:
In [91]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
In [92]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])
In [93]: df2 = df[:4]
In [94]: df2
Out[94]:
A B
first second
bar one 0.029399 -0.542108
two 0.282696 -0.087302
baz one -1.575170 1.771208
two 0.816482 1.100230
|
堆叠 函数 “压缩” 数据桢的列一个级别.
1
2
3
4
5
6
7
8
9
10
11
12
13
|
In[95]:stacked=df2.stack()
In[96]:stacked
Out[96]:
first second
bar one A 0.029399
B -0.542108
two A 0.282696
B -0.087302
baz one A -1.575170
B 1.771208
two A 0.816482
B 1.100230
dtype:float64
|
被“堆叠”数据桢或序列(有多个索引作为索引), 其堆叠的反向操作是未堆栈, 上面的数据默认反堆叠到上一级别:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
In [97]: stacked.unstack()
Out[97]:
A B
first second
bar one 0.029399 -0.542108
two 0.282696 -0.087302
baz one -1.575170 1.771208
two 0.816482 1.100230
In [98]: stacked.unstack(1)
Out[98]:
second one two
first
bar A 0.029399 0.282696
B -0.542108 -0.087302
baz A -1.575170 0.816482
B 1.771208 1.100230
In [99]: stacked.unstack(0)
Out[99]:
first bar baz
second
one A 0.029399 -1.575170
B -0.542108 1.771208
two A 0.282696 0.816482
B -0.087302 1.100230
|
数据透视表
查看数据透视表.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
In[100]:df=pd.DataFrame({'A':['one','one','two','three']*3,
.....: 'B':['A','B','C']*4,
.....: 'C':['foo','foo','foo','bar','bar','bar']*2,
.....: 'D':np.random.randn(12),
.....: 'E':np.random.randn(12)})
.....:
In[101]:df
Out[101]:
A B C D E
0 one A foo 1.418757-0.179666
1 one B foo-1.879024 1.291836
2 two C foo 0.536826-0.009614
3 three A bar 1.006160 0.392149
4 one B bar-0.029716 0.264599
5 one C bar-1.146178-0.057409
6 two A foo 0.100900-1.425638
7 three B foo-1.035018 1.024098
8 one C foo 0.314665-0.106062
9 one A bar-0.773723 1.824375
10 two B bar-1.170653 0.595974
11 three C bar 0.648740 1.167115
|
我们可以从此数据非常容易的产生数据透视表:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
In [102]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
Out[102]:
C bar foo
A B
one A -0.773723 1.418757
B -0.029716 -1.879024
C -1.146178 0.314665
three A 1.006160 NaN
B NaN -1.035018
C 0.648740 NaN
two A NaN 0.100900
B -1.170653 NaN
C NaN 0.536826
|
时间序列
pandas有易用,强大且高效的函数用于高频数据重采样转换操作(例如,转换秒数据到5分钟数据), 这是很普遍的情况,但并不局限于金融应用, 请参阅时间序列章节
1
2
3
4
5
6
|
In[103]:rng=pd.date_range('1/1/2012',periods=100,freq='S')
In[104]:ts=pd.Series(np.random.randint(0,500,len(rng)),index=rng)
In[105]:ts.resample('5Min',how='sum')
Out[105]:
2012-01-01 25083
Freq:5T,dtype:int32
|
时区表示
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
In [106]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')
In [107]: ts = pd.Series(np.random.randn(len(rng)), rng)
In [108]: ts
Out[108]:
2012-03-06 0.464000
2012-03-07 0.227371
2012-03-08 -0.496922
2012-03-09 0.306389
2012-03-10 -2.290613
Freq: D, dtype: float64
In [109]: ts_utc = ts.tz_localize('UTC')
In [110]: ts_utc
Out[110]:
2012-03-06 00:00:00+00:00 0.464000
2012-03-07 00:00:00+00:00 0.227371
2012-03-08 00:00:00+00:00 -0.496922
2012-03-09 00:00:00+00:00 0.306389
2012-03-10 00:00:00+00:00 -2.290613
Freq: D, dtype: float64
|
转换到其它时区
1
2
3
4
5
6
7
8
|
In[111]:ts_utc.tz_convert('US/Eastern')
Out[111]:
2012-03-0519:00:00-05:00 0.464000
2012-03-0619:00:00-05:00 0.227371
2012-03-0719:00:00-05:00 -0.496922
2012-03-0819:00:00-05:00 0.306389
2012-03-0919:00:00-05:00 -2.290613
Freq:D,dtype:float64
|
转换不同的时间跨度
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
In [112]: rng = pd.date_range('1/1/2012', periods=5, freq='M')
In [113]: ts = pd.Series(np.random.randn(len(rng)), index=rng)
In [114]: ts
Out[114]:
2012-01-31 -1.134623
2012-02-29 -1.561819
2012-03-31 -0.260838
2012-04-30 0.281957
2012-05-31 1.523962
Freq: M, dtype: float64
In [115]: ps = ts.to_period()
In [116]: ps
Out[116]:
2012-01 -1.134623
2012-02 -1.561819
2012-03 -0.260838
2012-04 0.281957
2012-05 1.523962
Freq: M, dtype: float64
In [117]: ps.to_timestamp()
Out[117]:
2012-01-01 -1.134623
2012-02-01 -1.561819
2012-03-01 -0.260838
2012-04-01 0.281957
2012-05-01 1.523962
Freq: MS, dtype: float64
|
转换时段并且使用一些运算函数, 下例中, 我们转换年报11月到季度结束每日上午9点数据
1
2
3
4
5
6
7
8
9
10
11
|
In[118]:prng=pd.period_range('1990Q1','2000Q4',freq='Q-NOV')
In[119]:ts=pd.Series(np.random.randn(len(prng)),prng)
In[120]:ts.index=(prng.asfreq('M','e')+1).asfreq('H','s')+9
In[121]:ts.head()
Out[121]:
1990-03-0109:00 -0.902937
1990-06-0109:00 0.068159
1990-09-0109:00 -0.057873
1990-12-0109:00 -0.368204
1991-03-0109:00 -1.144073
Freq:H,dtype:float64
|
分类
自版本0.15起, pandas可以在数据桢中包含分类. 完整的文档, 请查看分类介绍 and the API文档.
1 |
In [122]: df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})
|
转换原始类别为分类数据类型.
1
2
3
4
5
6
7
8
9
10
11
|
In[123]:df["grade"]=df["raw_grade"].astype("category")
In[124]:df["grade"]
Out[124]:
0 a
1 b
2 b
3 a
4 a
5 e
Name:grade,dtype:category
Categories(3,object):[a,b,e]
|
重命令分类为更有意义的名称 (分配到Series.cat.categories对应位置!)
1 |
In [125]: df["grade"].cat.categories = ["very good", "good", "very bad"]
|
重排顺分类,同时添加缺少的分类(序列 .cat方法下返回新默认序列)
1
2
3
4
5
6
7
8
9
10
11
|
In[126]:df["grade"]=df["grade"].cat.set_categories(["very
bad","bad","medium","good","very
good"])
In[127]:df["grade"]
Out[127]:
0 verygood
1 good
2 good
3 verygood
4 verygood
5 verybad
Name:grade,dtype:category
Categories(5,object):[verybad,bad,medium,good,verygood]
|
排列分类中的顺序,不是按词汇排列.
1
2
3
4
5
6
7
8
9
|
In [128]: df.sort("grade")
Out[128]:
id raw_grade grade
5 6 e very bad
1 2 b good
2 3 b good
0 1 a very good
3 4 a very good
4 5 a very good
|
类别列分组,并且也显示空类别.
1
2
3
4
5
6
7
8
9
|
In[129]:df.groupby("grade").size()
Out[129]:
grade
verybad 1
bad NaN
medium NaN
good 2
verygood 3
dtype:float64
|
绘图
绘图文档.
1
2
3
4
|
In [130]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
In [131]: ts = ts.cumsum()
In [132]: ts.plot()
Out[132]: <matplotlib.axes._subplots.AxesSubplot at 0xb02091ac>
|
在数据桢中,可以很方便的绘制带标签列:
1
2
3
4
5
6
|
In[133]:df=pd.DataFrame(np.random.randn(1000,4),index=ts.index,
.....: columns=['A','B','C','D'])
.....:
In[134]:df=df.cumsum()
In[135]:plt.figure();df.plot();plt.legend(loc='best')
Out[135]:<matplotlib.legend.Legendat0xb01c9cac>
|
获取数据输入/输出
CSV
1 |
In [136]: df.to_csv('foo.csv')
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
In[137]:pd.read_csv('foo.csv')
Out[137]:
Unnamed:0 A B C D
0 2000-01-01 0.266457 -0.399641-0.219582 1.186860
1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536
3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896
4 2000-01-05 0.578117 0.511371 0.103552 -2.428202
5 2000-01-06 0.478344 0.449933-0.741620 -1.962409
6 2000-01-07 1.235339 -0.091757-1.543861 -1.084753
.. ... ... ... ... ...
993 2002-09-20-10.628548 -9.153563-7.883146 28.313940
994 2002-09-21-10.390377 -8.727491-6.399645 30.914107
995 2002-09-22 -8.985362 -8.485624-4.669462 31.367740
996 2002-09-23 -9.558560 -8.781216-4.499815 30.518439
997 2002-09-24 -9.902058 -9.340490-4.386639 30.105593
998 2002-09-25-10.216020 -9.480682-3.933802 29.758560
999 2002-09-26-11.856774-10.671012-3.216025 29.369368
[1000rowsx5columns]
|
HDF5
读写HDF存储
写入HDF5存储
1 |
In [138]: df.to_hdf('foo.h5','df')
|
读取HDF5存储
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
In[139]:pd.read_hdf('foo.h5','df')
Out[139]:
A B C D
2000-01-01 0.266457 -0.399641-0.219582 1.186860
2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2000-01-03 -1.734933 0.530468 2.060811 -0.515536
2000-01-04 -1.555121 1.452620 0.239859 -1.156896
2000-01-05 0.578117 0.511371 0.103552 -2.428202
2000-01-06 0.478344 0.449933-0.741620 -1.962409
2000-01-07 1.235339 -0.091757-1.543861 -1.084753
... ... ... ... ...
2002-09-20-10.628548 -9.153563-7.883146 28.313940
2002-09-21-10.390377 -8.727491-6.399645 30.914107
2002-09-22 -8.985362 -8.485624-4.669462 31.367740
2002-09-23 -9.558560 -8.781216-4.499815 30.518439
2002-09-24 -9.902058 -9.340490-4.386639 30.105593
2002-09-25-10.216020 -9.480682-3.933802 29.758560
2002-09-26-11.856774-10.671012-3.216025 29.369368
[1000rowsx4columns]
|
Excel
读写MS Excel
写入excel文件
1 |
In [140]: df.to_excel('foo.xlsx', sheet_name='Sheet1')
|
读取excel文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
In[141]:pd.read_excel('foo.xlsx','Sheet1',index_col=None,na_values=['NA'])
Out[141]:
A B C D
2000-01-01 0.266457 -0.399641-0.219582 1.186860
2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2000-01-03 -1.734933 0.530468 2.060811 -0.515536
2000-01-04 -1.555121 1.452620 0.239859 -1.156896
2000-01-05 0.578117 0.511371 0.103552 -2.428202
2000-01-06 0.478344 0.449933-0.741620 -1.962409
2000-01-07 1.235339 -0.091757-1.543861 -1.084753
... ... ... ... ...
2002-09-20-10.628548 -9.153563-7.883146 28.313940
2002-09-21-10.390377 -8.727491-6.399645 30.914107
2002-09-22 -8.985362 -8.485624-4.669462 31.367740
2002-09-23 -9.558560 -8.781216-4.499815 30.518439
2002-09-24 -9.902058 -9.340490-4.386639 30.105593
2002-09-25-10.216020 -9.480682-3.933802 29.758560
2002-09-26-11.856774-10.671012-3.216025 29.369368
[1000rowsx4columns]
|
陷阱
如果尝试这样操作可能会看到像这样的异常:
1
2
3
4
5
|
>>>ifpd.Series([False,True,False]):
print("I
was true")
Traceback
...
ValueError:Thetruthvalueofanarrayisambiguous.Usea.empty,a.any()ora.all().
|
查看对照获取解释和怎么做的帮助
也可以查看陷阱.
相关推荐
- 二叉树、红黑树、B&B+树超齐全,快速搞定数据结构
- python入门指南txt-十分钟搞定 C/C++ 项目自动化构建 —— Xmake 入门指南
- 十分钟搞定上传本地项目到github
- 一次搞定亚马逊 Used Sold as New 二手品申诉,速度 Get!
- 轻松搞定数据验证(二)
- Pandas 中第二好用的函数是?
- 用pandas进行数据分析:结合JData ”用户购买时间预测“数据分析实例(二)
- python数据可视三大库之pandas库(二:Dataframe类型简易上手)
- pandas中的None与NaN (二)
- 【原】十分钟搞定pandas
- 10行Python代码自动清理电脑内重复文件,解放双手!
- 想知道深度学习是如何工作的?这里有个基础指南