Tensorflow实现生成对抗网络
原理
生成式对抗网络是一种无监督的生成式模型(Generative Adversarial Nets,GAN)
GAN 中主要包括两个核心网络:
1)生成器:通过学习,生成可以以假乱真的样本G
2)判别器:对真实样本和生成的假样本进行判别D
两个生成器进行博弈,相互进步,能力逐渐提高并收敛
Gan的训练过程比较困难,需要注意很多细节,才可以生成高质量的图片:
1)恰当使用BN,LeakyRelu
2)使用strides为2的卷积代替池化
3)交替进行,避免一方太强(本文采用生成器优化两次,判别器优化一次)
(本文以MNIST为例)
损失函数
对于一个服从随机分布的噪音Z,生成器通过一个复杂的映射函数生成假的样本D,判别器则使用另一个复杂的函数对于真实样本和生成的样本输出0-1之间的值,1为真,0为假,便是为真的概率S
#导入库
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import os
import imageio #读取图片
#导入数据
from tensorflow.examples.tutorials.mnist import input_data
mnist=input_data.read_data_sets('MNIST_data')
batch_size=100 #迭代样本数
z_dim=100 #噪音的维度100
OUTPUT_DIR='samples' #输出文件
if not os.path.exists(OUTPUT_DIR):
os.mkdir(OUTPUT_DIR)
X=tf.placeholder(dtype=tf.float32,shape=[None,28,28,1],name='X')
noise=tf.placeholder(dtype=tf.float32,shape=[None,z_dim],name='noise')
is_training=tf.placeholder(dtype=tf.bool,name='is_training')
def lrelu(x,leak=0.2):
return tf.maximum(x,leak*x)
def sigmoid_cross_entropy_with_logits(x,y):
return tf.nn.sigmoid_cross_entroy_with_logits(logits=x,labels=y)
#判别器
def discriminator(image,reuse=None,is_training=is_training):
momentum=0.9
with tf.variable_scope('discriminator',reuse=reuse):#划分区域
h0=lrelu(tf.layers.conv2d(image,kernel_size=5,filters=64,strides=2,padding='same')) #输入一张图片
h1=tf.layers.conv2d(h0,kernel_size=5,filters=128,strides=2,padding='same')
h1=lrelu(tf.contrib.layers.batch_norm(h1,is_training=is_training,decay=momentum)) #BN在**函数之前
h2 = tf.layers.conv2d(h1, kernel_size=5, filters=256, strides=2, padding='same')
h2 = lrelu(tf.contrib.layers.batch_norm(h2, is_training=is_training, decay=momentum))
h3 = tf.layers.conv2d(h2, kernel_size=5, filters=512, strides=2, padding='same')
h3 = lrelu(tf.contrib.layers.batch_norm(h3, is_training=is_training, decay=momentum))
h4 = tf.contrib.layers.flatten(h3) #全连接前的处理,第一维度,二三四维度相乘为一个向量
h4 = tf.layers.dense(h4, units=1) #全连接层
return tf.nn.sigmoid(h4), h4
#生成器
def generator(z,is_training=is_training):
momentum=0.9
with tf.variable_scope('generator',reuse=None):
d=3
h0=tf.layers.dense(z,units=d*d*512)
h0=tf.reshape(h0,shape=[-1,d,d,512])
h0=tf.nn.relu(tf.contrib.layers.batch_norm(h0,is_training=is_training,decay=momentum))
h1=tf.layers.conv2d_transpose(h0,kernel_size=5,filters=256,strides=2,padding='same')
h1=tf.nn.relu(tf.contrib.layers.batch_norm(h1,is_training=is_training,decay=momentum))
h2 = tf.layers.conv2d_transpose(h1, kernel_size=5, filters=128, strides=2, padding='same')
h2 = tf.nn.relu(tf.contrib.layers.batch_norm(h2, is_training=is_training, decay=momentum))
h3 = tf.layers.conv2d_transpose(h2, kernel_size=5, filters=64, strides=2, padding='same')
h3 = tf.nn.relu(tf.contrib.layers.batch_norm(h3, is_training=is_training, decay=momentum))
h4 = tf.layers.conv2d_transpose(h3, kernel_size=5, filters=1, strides=1, padding='valid', activation=tf.nn.tanh, name='g')
return h4
#定义损失函数,虽然是两个部分,但是参数是共享的
g=generator(noise)
d_real,d_real_logits=discriminator(X) #真实样本
d_fake,d_fake_logits=discriminator(g,reuse=True) #参数共享
vars_g=[var for var in tf.trainable_variables() if var.name.startswith('generator')]
vars_d=[var for var in tf.trainable_variables() if var.name.startswith('discriminator')]
loss_d_real=tf.reduce_mean(sigmoid_cross_entropy_with_logits(d_real_logits,tf.ones_like(d_real)))
loss_d_fake=tf.reduce_mean(sigmoid_cross_entropy_with_logits(d_fake_logits,tf.zeros_like(d_fake))) #真实数据和假的数据
loss_g=tf.reduce_mean(sigmoid_cross_entropy_with_logits(d_fake_logits,tf.ones_like(d_fake)))#生成器的损失函数
loss_d=loss_d_real+loss_d_fake #判别器的损失函数
#定义优化函数注意损失函数需要和可调参数对应上
update_ops=tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops): #先执行BN参数更新,根据每一批的均值和方差去估计整个数据的均值和方差
optimizer_d=tf.train.AdamOptimizer(learning_rate=0.0002,beta1=0.5).minimize(loss_d,var_list=vars_d)
optimizer_g=tf.train.AdamOptimizer(learning_rate=0.0002,beta1=0.5).minimize(loss_g,var_list=vars_g)
#定义一个辅助函数,用于将多张图片以网格状拼在一起显示
def montage(images):
if isinstance(images,list):
images=np.array(images)
img_h=images.shape[1]
img_w=images.shape[2]
n_plots=int(np.sqrt(images.shape[0]))
m=np.ones((images.shape[1]*n_plots+1,images.shape[2]*n_plots+1))*0.5
for i in range(n_plots):
for j in range(n_plots):
this_filter=i*n_plots+j
if this_filter<images.shape[0]:
this_img=images[this_filter]
m[1+i+i*img_h:1+i+(i+1)*img_h,1 + j + j * img_w:1 + j + (j + 1) * img_w] = this_img
return m
#开始训练模型,G更新两次
sess=tf.Session()
sess.run(tf.global_variables_initializer())
z_samples = np.random.uniform(-1.0, 1.0, [batch_size, z_dim]).astype(np.float32)
#随机生成的一个样本
samples = []
loss = {'d': [], 'g': []}
for i in range(600):
n=np.random.uniform(-1.0,1.0,[batch_size,z_dim]).astype(np.float32)
batch=mnist.train.next_batch(batch_size=batch_size)[0]#样本和标签
batch = np.reshape(batch, [-1, 28, 28, 1])
batch = (batch - 0.5) * 2 #【-1,1】
d_ls, g_ls = sess.run([loss_d, loss_g], feed_dict={X: batch, noise: n, is_training: True}) #训练中
loss['d'].append(d_ls)
loss['g'].append(g_ls)
sess.run(optimizer_d, feed_dict={X: batch, noise: n, is_training: True}) #优化
sess.run(optimizer_g, feed_dict={X: batch, noise: n, is_training: True})
sess.run(optimizer_g, feed_dict={X: batch, noise: n, is_training: True})
if i % 50 == 0:
print(i, d_ls, g_ls) #输出损失函数
gen_imgs = sess.run(g, feed_dict={noise: z_samples, is_training: False})#用生成器生成图片,噪音保持不变
gen_imgs = (gen_imgs + 1) / 2
imgs = [img[:, :, 0] for img in gen_imgs]
gen_imgs = montage(imgs)
plt.axis('off')
plt.imshow(gen_imgs, cmap='gray')
plt.savefig(os.path.join(OUTPUT_DIR, 'sample_%d.jpg' % i))
plt.show()
samples.append(gen_imgs)
plt.plot(loss['d'], label='Discriminator')
plt.plot(loss['g'], label='Generator')
plt.legend(loc='upper right')
plt.savefig('Loss.png')
plt.show()
imageio.mimsave(os.path.join(OUTPUT_DIR, 'samples.gif'), samples, fps=5)