密码学课设实验——RSA算法c++实现
一、实验目的
掌握并实现RSA算法。
- 实验内容
利用C\C++实现RSA算法的加、解密运算。
具体包括:
1) 利用扩展的Euclid计算 a mod n 的乘法逆元;
2) Miller-Rabin素性测试算法对一个给定的大数进行测试;
3) 实现 的运算,并计算 ;
4) 利用Euler定理手工计算 ,并与3)计算的结果对比;
5) 实现RSA算法。并对"I LOVE NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS"加解密。
- 实验步骤
- 计算乘法逆元:
按照书p94上的模n求逆算法写函数。
- Miller-Rabin素性测试:
按照书上p110上的Miller-Rabin素性测试算法写函数。
- 求大数幂乘:
按照书上p95上的模n的大数幂乘的快速算法写函数。
- RSA算法的实现
按照书上p96上的RSA算法写函数。
由于没想到大数如何实现及使用,p,q只使用了1000以内的素数,可能会出现错误。
首先计算n=p*q,利用前面实现的扩展欧几里得算法求出e,d,然后按照模运算实现加密与解密,因为使用了小素数,所以直接利用字符的ascii码进行加解密,而没有利用编码.
代码如下:
#include"pch.h"
#include "iostream"
using namespace std;
#include <cmath>
#include <cstring>
#include <ctime>
#include <cstdlib>
typedef long long int ll;
ll Power_mul(ll a, ll b, ll c, ll n);//幂乘
//***************************扩展欧几里得计算乘法逆元***************************
//记gcd(a,b)表示非负整数a,b的最大公因数,那么:gcd(a,b)=gcd(b,a%b)
ll gcd(ll a, ll b)
{
if (a < b)
{
ll temp = b;
b = a;
a = temp;
}
if (a%b == 0)
return b;
else
return gcd(b, a%b);
}
//gcd(n,u)=an+bu;
ll ExtendEculid(ll n1, ll n2, ll b1, ll b2)
{
ll q, r;
q = n1 / n2;
r = n1 - q*n2;
if (r != 0)
{
ll temp = b1 - q*b2;
ExtendEculid(n2, r, b2, temp);
}
if (n2 == 1)
return b2;
}
//调用过程
void Inverse_element()
{
cout << "u * v == 1(mod n)\n";
cout << "";
ll u, n, t;
cout << "请输入u:";
cin >> u;
cout << "请输入n:";
cin >> n;
if (gcd(n, u) != 1)
cout << "两个数不互素,没有乘法逆元!" << endl << endl;
else
{
t = ExtendEculid(n, u, 0, 1);
if (t < 0)
t += n;
cout << u << "mod" << n << "的逆元为" << t << endl;
}
}
//***************************Miller-Rabin素性测试算法***************************
bool Miller_Rabin(ll n)
{
ll r = 0;
ll z = 0;
ll m = 0;
ll s = 0;
m = n - 1;
if (n < 2)
return false;
else if (n == 2)
return true;
while (m % 2 == 0) {
m /= 2;
s = s + 1;
}
srand(time(NULL));
ll b = rand() % (n - 2) + 2;
/*for(int i = 0;i < m - 1;i++)
z1 = b*b;
z1 = ((z1 % n) + n)% n;*/
z = Power_mul(b, m, 1, n);
if (z == 1 || z == n - 1)
return true;
else
{
while (1) {
if (r == (s - 1))
return false;
else
{
r = r + 1;
z = Power_mul(z, 2, 1, n);
if (z == (n - 1))
return true;
}
}
}
}
void MR()
{
ll N;
bool result;
cout << "请输入N:";
cin >> N;
result = Miller_Rabin(N);
if (result)
cout << N << "是素数" << endl;
else
cout << "不是素数" << endl;
}
//***************************模n的大数幂乘的快速算法***************************
ll Power_mul(ll a,ll b,ll c,ll n)
{
//初始a=x,b=r,c=1
while (b != 0)
{
while (b % 2 == 0)
{
b /= 2;
a = (a * a) % n;
}
b -= 1;
c = (c * a) % n;
}
return c;
}
void PM()
{
cout << "x^r mod n" << endl;
ll x, r, n;
cout << "请输入x:";
cin >> x;
cout << "请输入r:";
cin >> r;
cout << "请输入n:";
cin >> n;
ll out = Power_mul(x, r, 1, n);
cout << x << "^" << r << " mod " << n << " = " << out << endl;
}
//***************************RSA加密***************************
int Plaintext[100];//明文
long long Ciphertext[100];//密文
int Plaintext_C[100];
int n, e = 0, d;
//生成1000以内素数
int ProducePrimeNumber(int prime[])
{
int c = 0, vis[1001];
memset(vis, 0, sizeof(vis));
for (int i = 2; i <= 1000; i++)if (!vis[i])
{
prime[c++] = i;
for (int j = i * i; j <= 1000; j += i)
vis[j] = 1;
}
return c;
}
//RSA初始化
void RSA_Initialize()
{
//取出1000内素数保存在prime[]数组中
int prime[5000];
int count_Prime = ProducePrimeNumber(prime);
//随机取两个素数p,q
srand((unsigned)time(NULL));
int ranNum1 = rand() % count_Prime;
int ranNum2 = rand() % count_Prime;
int p = prime[ranNum1], q = prime[ranNum2];
n = p * q;
int On = (p - 1)*(q - 1);
//用欧几里德扩展算法求e,d
for (int j = 2; j < On; j += 1331)
{
d = ExtendEculid(On, j, 0, 1);
if (gcd(On,j) == 1 & d>0)
{
e = j;
break;
}
}
}
//RSA加密
void RSA_Encrypt()
{
cout << endl;
cout << "公钥(e, n) : e = " << e << " n = " << n << "\t";
cout << "私钥(d, n) : d = " << d << " n = " << n << endl;
int i = 0;
for (i = 0; i < 100; i++)
Ciphertext[i] = Power_mul(Plaintext[i], e, 1, n);
cout << endl;
cout << "用公钥(e, n)加密出的密文如下:" ;
for (i = 0; i < 100; i++)
cout << Ciphertext[i] << " ";
cout << endl;
}
//RSA解密
void RSA_Decrypt()
{
int i = 0;
for (i = 0; i < 100; i++)
Plaintext_C[i] = Power_mul(Ciphertext[i], d, 1, n);
cout << endl;
cout << "用私钥(d, n)解密出的明文如下:" ;
for (i = 0; i < 100; i++)
printf("%c", Plaintext_C[i]);
cout << endl;
}
//明文读入,因为取的素数比较小,所以直接用了ascii码来写
void Initialize()
{
char ch[] = "I LOVE NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS";
int counter=0;
while (ch[counter] != '\0')
{
counter++;
}
//cout << "counter:" << counter << endl;
int i,j=0;
for (i = 0; i < 100; i++)
{
if (j != counter)
{
Plaintext[i] = ch[j];
j++;
}
else
{
Plaintext[i] = 32;//空格
}
}
cout << "明文如下:";
for (i = 0; i < 100; i++)
{
printf("%c", Plaintext[i]);
}
cout << endl;
}
int RSA_main()
{
Initialize();
while (!e)
RSA_Initialize();
RSA_Encrypt();
RSA_Decrypt();
return 0;
}
//***************************main函数***************************
int main()
{
while (true)
{
cout << "菜单选项" << endl;
cout << "1.求乘法逆元\t2.Miller-Rabin素性测试\t3.求大数幂乘\t4.RSA" << endl;
int choice;
cout << "请输入你的选择:";
cin >> choice;
switch (choice)
{
case 1:Inverse_element();
break;
case 2:MR();
break;
case 3:PM();
break;
case 4:RSA_main();
break;
default:break;
}
cout << endl;
}
return 0;
}
实验结果: