生成对抗网络(GANs)最新家谱:为你揭秘GANs的前世今生

生成对抗网络(GANs)最新家谱:为你揭秘GANs的前世今生

作者:Guim Perarnau

编译:Katherine Hou、朝夕、Katrine Ren、Shan LIU、笪洁琼、钱天培

生成对抗网络(GAN)一经提出就风光无限,更是被Yann Lecun誉为“十年来机器学习领域最有趣的想法”。

GAN“左右互搏”的理念几乎众所周知,但正如卷积神经网络(CNN)一样,GAN发展至今已经衍生出了诸多变化形态。

今天,文摘菌就来为大家盘点一下GAN大家庭中各具特色的成员们。

他们的名单如下:

1.DCGANs

2.Improved DCGANs

3.Conditional GANs

4.InfoGANs

5.Wasserstein GANs

6.Improved WGANs

7.BEGANs

8.ProGANs

9.CycleGANs

注意,这篇文章不会包含以下内容

•   复杂的技术分析

•   代码(但有代码链接)

•   详细的研究清单

(你可以点击以下链接https://github.com/zhangqianhui/AdversarialNetsPapers)

想要了解更多GANs相关内容的也可以留言告诉文摘菌哦~

GANs概论

如果你对GANs很熟悉的话,你可以跳过这部分的内容。

生成对抗网络(GANs)最新家谱:为你揭秘GANs的前世今生

GANs最早由Ian Goodfellow提出,由两个网络构成,一个生成器和一个鉴别器。他们在同一时间训练并且在极小化极大算法(minimax)中进行竞争。生成器被训练来欺骗鉴别器以产生逼真的图像,鉴别器则在训练中学会不被生成器愚弄。

生成对抗网络(GANs)最新家谱:为你揭秘GANs的前世今生GAN 训练原理概览

首先,生成器通过从一个简单分布(例如正态分布)中抽取一个噪音向量Z,并且上行采样(upsample)这个向量来生成图像。在最初的循环中,这些图像看起来非常嘈杂。然后,鉴别器得到真伪图像并学习去识别它们。随后生成器通过反向传播算法(backpropagation)收到鉴别器的反馈,渐渐在生成图像时做得更好。我们最终希望伪图像的分布尽可能地接近真图像。或者,简单来说,我们想要伪图像尽可能看起来像真的一样。 

值得一提的是,因为GANs是用极小化极大算法做优化的,所以训练过程可能会很不稳定。不过你可以使用一些“小技巧”来获得更稳健的训练过程。

在下面这个视频中,你可以看到GANs所生成图片的训练演变过程。