飞鸿踏雪
五.结论
这篇论文呈现了一种新型的雷达通信一体化波形,并且主要探究了该波形的产生、频谱和模糊函数,以及波形的系数参数对模糊函数的影响。基于理论分析和仿真结果,得出如下结论:
调制的线性调频信号的模糊函数比未调制的线性调频信号更加接近于图钉形状
零延时切片是一种标准的抽样函数,其仅仅与总的脉冲宽度有关。因此,多普勒分辨率是,与线性调频信号的调制和其系数无关。
当时,零多普勒切片可以用仅仅与总带宽有关的抽样函数来近似。因此,延时分辨率为,又因为,延时分辨率最终与线性调频信号的系数成反比关系。
4.当条件不满足时,零多普勒切片不能直接得出延时分辨率。但是仿真结果表明,主波瓣的宽度依旧是,即延时分辨率依旧为。仿真结果同时表明,零多普勒切片的子波瓣受到比特数的影响。保持总的脉冲宽度和线性调频信号的系数不变,比特数越大,模糊函数越接近与图钉形状,靠近于主波瓣的子波瓣也就越突出显著。
上述结论,提供了一种得到良好的雷达波形的方法:通过增大比特数,但保持总的脉冲宽度和线性调频信号的系数不变,使得波形的模糊函数更接近于图钉形状。
参考文献
[1] M. Roberton, E. R. Brown, “Integrated Radar and Communications based on Chirped Spread-Spectrum Techniques”,IEEE MTT-S Int Microwave Symp.Philadelphia, U.S.A., pp. 611-614, June 2003.
[2] M. Jamil, H. J. Zepernick, M. I. Pettersson,“On Integrated Radar and Communication Systems Using Oppermann Sequences”, IEEE Int Conf. on Military Communication, San Diego, 2008.
[3] S. J. Xu, Y Chen, P. Zhang, “Integrated Radar and Communication based on DS-UWB,” IEEE Ultra wideband and Ultra short Impulse Signals,Sevastopol, Ukraine, pp. 142-144, Sept. 2006.
[4] S. J. Xu, B. Chen, P. Zhang,“Radar-Communication Integration based on DSSS Techniques,” IEEE Int Conf. on Signal Processing, Beijing, China, pp 16-20, Nov. 2006.
[5] William H. Fiden, Donald W Czubiak, “Radar-Compatible Datalink System”,United States Patent, 2007.
[6] Peli Barrenechea, Frans Elferink,Johan Janssen,"FMCW Radar Communication with Braodband Communication Capability"IEEE Proceedings of the European Radar Conference, Munich, Germany, pp.130-133, Oct. 2007.
[7] Shrawan C. Surender, Ram M. Narayanan, Chita R.Das,“Performance Analysis of Communications & Radar Coexistence in a Covert UWB OSA System”, IEEE Globecom 2010 proceedings.
[8] Fuqin Xiong, Digital Modulation Techniques, ed., pp.207-446,Norwood: Artech House, Inc., 2006.
[9]樊昌信,曹丽娜著.通信原理第版,pp.241-251,北京:国防上业出版社,2008.
[10] Bassem. R. Mahafza,Radar Signal Analysis and Processing Using MATLAB, pp.109-114, New York: Chapman&Hall/CRC,2009.
[11]吴顺君,梅晓春等.雷达信号处理和数据处理技术,pp.62-68.北京:电子上业出版社,2008.