分布式链路追踪 对比

从上表可以看出,在三种链路监控组件中,skywalking的探针对吞吐量的影响最小,zipkin的吞吐量居中。pinpoint的探针对吞吐量的影响较为明显,

在500并发用户时,测试服务的吞吐量从1385降低到774,影响很大。然后再看下CPU和memory的影响,在内部服务器进行的压测,

对CPU和memory的影响都差不多在10%之内。
分布式链路追踪 对比

分布式链路追踪 对比

分布式链路追踪 对比

分布式链路追踪 对比

分布式调用跟踪系统的设计

(1)分布式调用跟踪系统的设计目标

低侵入性,应用透明:作为非业务组件,应当尽可能少侵入或者无侵入其他业务系统,对于使用方透明,减少开发人员的负担

低损耗:服务调用埋点本身会带来性能损耗,这就需要调用跟踪的低损耗,实际中还会通过配置采样率的方式,选择一部分请求去分析请求路径

大范围部署,扩展性:作为分布式系统的组件之一,一个优秀的调用跟踪系统必须支持分布式部署,具备良好的可扩展性

(2)埋点和生成日志

埋点即系统在当前节点的上下文信息,可以分为客户端埋点、服务端埋点,以及客户端和服务端双向型埋点。埋点日志通常要包含以下内容:

TraceId、RPCId、调用的开始时间,调用类型,协议类型,调用方ip和端口,请求的服务名等信息;

调用耗时,调用结果,异常信息,消息报文等;

预留可扩展字段,为下一步扩展做准备;

(3)抓取和存储日志

日志的采集和存储有许多开源的工具可以选择,一般来说,会使用离线+实时的方式去存储日志,主要是分布式日志采集的方式。典型的解决方案如Flume结合Kafka等MQ。

(4)分析和统计调用链数据

一条调用链的日志散落在调用经过的各个服务器上,首先需要按 TraceId 汇总日志,然后按照RpcId 对调用链进行顺序整理。用链数据不要求百分之百准确,可以允许中间的部分日志丢失。

(5)计算和展示

汇总得到各个应用节点的调用链日志后,可以针对性的对各个业务线进行分析。需要对具体日志进行整理,进一步储存在HBase或者关系型数据库中,可以进行可视化的查询。

 

链路跟踪Trace模型

一次典型的分布式调用过程,如下图所示:

分布式链路追踪 对比

 

Trace调用模型,主要有以下概念:

Trace:一次完整的分布式调用跟踪链路。

Span: 追踪服务调基本结构,表示跨服务的一次调用; 多span形成树形结构,组合成一次Trace追踪记录。

Annotation:在span中的标注点,记录整个span时间段内发生的事件。

BinaryAnnotation:可以认为是特殊的Annotation,用户自定义事件。

Annotation类型:保留类型

Cs CLIENT_SEND,客户端发起请求

Cr CLIENT_RECIEVE,客户端收到响应

Sr SERVER_RECIEVE,服务端收到请求

Ss SERVER_SEND,服务端发送结果

用户自定义类型:

Event 记录普通事件

Exception 记录异常事件

Client && Server:对于跨服务的一次调用,请求发起方为client,服务提供方为server

各术语在一次分布式调用中,关系如下图所示:

分布式链路追踪 对比

 

调用跟踪系统的选型

    大的互联网公司都有自己的分布式跟踪系统,比如Google的Dapper,Twitter的zipkin,淘宝的鹰眼,新浪的Watchman,京东的Hydra等,下面来简单分析。

Google的Drapper

Dapper是Google生产环境下的分布式跟踪系统,Dapper有三个设计目标:

低消耗:跟踪系统对在线服务的影响应该做到足够小。

应用级的透明:对于应用的程序员来说,是不需要知道有跟踪系统这回事的。如果一个跟踪系统想生效,就必须需要依赖应用的开发者主动配合,那么这个跟踪系统显然是侵入性太强的。

延展性:Google至少在未来几年的服务和集群的规模,监控系统都应该能完全把控住。

处理分为3个阶段:

①各个服务将span数据写到本机日志上;

②dapper守护进程进行拉取,将数据读到dapper收集器里;

③dapper收集器将结果写到bigtable中,一次跟踪被记录为一行。 

阿里-鹰眼

关于淘宝的鹰眼系统,主要资料来自于内部分享:

分布式链路追踪 对比

 

鹰眼埋点和生成日志:

分布式链路追踪 对比

 

如何抓取和存储日志,记录本地文件,使用额外的后台进程定期(时间间隔小)收集日志。这种方式的优势在于对应用的性能影响小,方便做消息堆积;但是需要在每台业务server上都部署并管理日志收集agent,运维量比较大。

分布式链路追踪 对比

 

鹰眼的实现小结:

分布式链路追踪 对比

 

注意Dapper与Eagle eye都不开源。

阿里EDAS+ARMS的立体化监控体系

    通过阿里云提供的EDAS结合ARMS可以打造立体化监控体系,其中EDAS用于应用管控层面,用于控制链路和应用;而ARMS更关注业务运营层面,如电商交易、车联网、零售;实际上,监控需要全方位关注业务、链路、应用、系统,通过ARMS与EDAS相互补全,形成了立体化监控体系。

 分布式链路追踪 对比

 

大众点评——CAT

架构简单。可以实现一个Trace系统的所有功能。架构如下图所示:

分布式链路追踪 对比

 

跟踪模型

Transaction是最重要的事件消息类型,适合记录跨越系统边界的程序访问行为,比如远程调用,数据库调用,也适合执行时间较长的业务逻辑监控,记录次数与时间开销。Transaction可嵌套。

跨服务的跟踪功能与点评内部的RPC框架集成,这部分未开源。

客户端接入方式

对于方法调用、sql、url请求等粒度较小的兴趣点,需要业务人员手写代码实现。

日志收集方式

直接向日志收集器发异步请求(有本地内存缓存),一台客户端会连向几个服务端,当一个服务端出问题,数据不会丢失。

当所有服务端都挂掉,消息会存入queue,当queue满了,就丢弃了,没有做数据存储本地等工作。

全量采样,系统繁忙的时候对性能影响较大(可能达到10%的影响)

最后一个稳定版本是2014年1月,之后已经失去维护。

京东-hydra

    与dubbo框架集成。对于服务级别的跟踪统计,现有业务可以无缝接入。对于细粒度的兴趣点,需要业务人员手动添加。架构如下:

分布式链路追踪 对比

 

Hydra中跟踪数据模型

Trace: 一次服务调用追踪链路。

Span: 追踪服务调基本结构,多span形成树形结构组合成一次Trace追踪记录。

Annotation: 在span中的标注点,记录整个span时间段内发生的事件。

BinaryAnnotation: 属于Annotation一种类型和普通Annotation区别,这键值对形式标注在span中发生的事件,和一些其他相关的信息。

日志收集方式

与CAT类似。支持自适应采样,规则粗暴简单,对于每秒钟的请求次数进行统计,如果超过100,就按照10%的比率进行采样。

开源项目已于2013年6月停止维护。

Twitter—OpenZipkin

功能、数据跟踪模型与hydra类似。Zipkin本身不开源,开源社区的是另外一套scala实现,依托于finagle这个RPC框架。架构如下:

分布式链路追踪 对比

 

Zipkin与其他Trace系统的不同之处在于:

Zipkin中针对 HttpClient、jax-rs2、jersey/jersey2等HTTP客户端封装了拦截器。可以在较小的代码侵入条件下实现URl请求的拦截、时间统计和日志记录等操作。

日志收集

Cat是直接将日志发往消费集群;hydra是发给日志收集器,日志收集器推到消息队列;Zipkin的client将统计日志发往消息队列,日志收集器读取后落地存储;Dapper和Eagle eye是记录本地文件,后台进程定期扫描。

 

Trace系统现状分析

    以上几款链路跟踪系统都各自满足了请求链路追踪的功能,但落实到我们自己的生产环境中时,这些Trace系统存在诸多问题:Google和alibaba的Trace系统不开源,但现阶段来说阿里是做得最好的,如果用的是阿里的服务器,可考虑直接用阿里的追踪系统以节省开发代价;

    京东和点评的虽然开源,但是已经多年没有维护,项目依赖的jdk版本以及第三方框架过于陈旧等等,不适合用在生产环境中;

    Twitter的OpenZipkin使用scala开发,而且其实现基于twitter内部的RPC框架finagle,第三方依赖比较多,接入和运维的成本非常高。

    如果不是用阿里的服务,我们可以借鉴这些开源实现的思想, 自行开发Trace系统。那是自己从0开始开发还是基于开源方案二次开发? 这里面也要考虑到跨平台,如NET和java环境,尽量减少原系统的侵入性或只需要更改少量的代码即可接入,在这里可以基于zipkin和pinpoint进行二次开发,功能可参考阿里的系统。

Zipkin 和 Pinpoint 选型对比

    Pinpoint 与 Zipkin 都是基于 Google Dapper 的那篇论文,因此理论基础大致相同。Pinpoint 与 Zipkin 有明显的差异,主要体现在如下几个方面:

  1. Pinpoint 是一个完整的性能监控解决方案:有从探针、收集器、存储到 Web 界面等全套体系;而 Zipkin 只侧重收集器和存储服务,虽然也有用户界面,但其功能与 Pinpoint 不可同日而语。反而 Zipkin 提供有 Query 接口,更强大的用户界面和系统集成能力,可以基于该接口二次开发实现。
  2. Zipkin 官方提供有基于 Finagle 框架(Scala 语言)的接口,而其他框架的接口由社区贡献,目前可以支持 Java、Scala、Node、Go、Python、Ruby 和 C# 等主流开发语言和框架;但是 Pinpoint 目前只有官方提供的 Java Agent 探针,其他的都在请求社区支援中。
  3. Pinpoint 提供有 Java Agent 探针,通过字节码注入的方式实现调用拦截和数据收集,可以做到真正的代码无侵入,只需要在启动服务器的时候添加一些参数,就可以完成探针的部署;而 Zipkin 的 Java 接口实现 Brave,只提供了基本的操作 API,如果需要与框架或者项目集成的话,就需要手动添加配置文件或增加代码。
  4. Pinpoint 的后端存储基于 HBase,而 Zipkin 基于 Cassandra。

接入难度

    因为 Brave 的注入需要依赖底层框架提供相关接口,因此并不需要对框架有一个全面的了解,只需要知道能在什么地方注入,能够在注入的时候取得什么数据就可以了。就像上面的例子,我们根本不需要知道 MySQL 的 JDBC Driver 是如何实现的也可以做到拦截 SQL 的能力。但是 Pinpoint 就不然,因为 Pinpoint 几乎可以在任何地方注入任何代码,这需要开发人员对所需注入的库的代码实现有非常深入的了解,通过查看其 MySQL 和 Http Client 插件的实现就可以洞察这一点,当然这也从另外一个层面说明 Pinpoint 的能力确实可以非常强大,而且其默认实现的很多插件已经做到了非常细粒度的拦截。
    针对底层框架没有公开 API 的时候,其实 Brave 也并不完全无计可施,我们可以采取 AOP 的方式,一样能够将相关拦截注入到指定的代码中,而且显然 AOP 的应用要比字节码注入简单很多。
    以上这些直接关系到实现一个监控的成本,在 Pinpoint 的官方技术文档中,给出了一个参考数据。如果对一个系统集成的话,那么用于开发 Pinpoint 插件的成本是 100,将此插件集成入系统的成本是 0;但对于 Brave,插件开发的成本只有 20,而集成成本是 10。从这一点上可以看出官方给出的成本参考数据是 5:1。但是官方又强调了,如果有 10 个系统需要集成的话,那么总成本就是 10 * 10 + 20 = 120,就超出了 Pinpoint 的开发成本 100,而且需要集成的服务越多,这个差距就越大。

    从短期目标来看,Pinpoint 确实具有压倒性的优势:无需对项目代码进行任何改动就可以部署探针、追踪数据细粒化到方法调用级别、功能强大的用户界面以及几乎比较全面的 Java 框架支持。但是长远来看,学习 Pinpoint 的开发接口,以及未来为不同的框架实现接口的成本都还是个未知数。相反,掌握 Brave 就相对容易,而且 Zipkin 的社区更加强大,更有可能在未来开发出更多的接口。在最坏的情况下,我们也可以自己通过 AOP 的方式添加适合于我们自己的监控代码,而并不需要引入太多的新技术和新概念。而且在未来业务发生变化的时候,Pinpoint 官方提供的报表是否能满足要求也不好说,增加新的报表也会带来不可以预测的工作难度和工作量。

    最后还要考虑日志收集(直接发送、记录到本地再上传)、日志接收(消息队列,直接进入ElasticSearch)、数据清洗(Logstach、Storm、SparkStreaming)、日志存储(Mysql、Hbase、ElasticSearch)、页面展示(自研还是直接用第三方的)。