Graph Convolutional Matrix Completion

1、Revisiting graph auto-encoders 图自编码器

1.1 符号定义

  • M M M:评分矩阵,维度为 N u × N v N_{u}×N_{v} Nu×Nv,其中 N u N_{u} Nu u s e r s users users的数量, N v N_{v} Nv i t e m s items items的数量
  • 非零的 M i j M_{ij} Mij表示 u s e r   i user\ i user i i t e m   j item\ j item j的评分, M i j = 0 Mij=0 Mij=0表示一个没有观测到评分

Graph Convolutional Matrix Completion
图1表示了整个模型的流程。在一个二分的 u s e r − i t e m user-item useritem交互图中,矩阵补全任务(即对未观察到的交互的预测)可以转换为链接预测问题,并使用端到端可训练的图自编码器进行建模。
Graph Convolutional Matrix Completion

1.2 Revisiting graph auto-encoders 图自编码器

Graph Convolutional Matrix Completion
Graph Convolutional Matrix Completion
Graph Convolutional Matrix Completion

1.3 Graph convolutional encoder 图卷积编码器

Graph Convolutional Matrix Completion
Graph Convolutional Matrix Completion

1.4 Bilinear decoder 双线性解码器

Graph Convolutional Matrix Completion

1.5 模型训练

Graph Convolutional Matrix Completion
Graph Convolutional Matrix Completion
Graph Convolutional Matrix Completion

论文链接:https://www.kdd.org/kdd2018/files/deep-learning-day/DLDay18_paper_32.pdf

Github链接:https://github.com/riannevdberg/gc-mc