Convex Optimization 读书笔记 (3)
4 Convex optimization problems
4.1 Optimization problems
4.1.1 Basic terminology
We use the notation
m
i
n
i
m
i
z
e
f
0
(
x
)
s
u
b
j
e
c
t
t
o
f
i
(
x
)
≤
0
,
i
=
1
,
.
.
.
m
h
i
(
x
)
=
0
,
i
=
1
,
.
.
.
p
\begin{aligned} {\rm minimize} \ \ \ \ & f_0(x)\\ {\rm subject\ to} \ \ \ \ & f_i(x)\leq0,i=1,...m \\ & h_i(x)=0,i=1,...p \end{aligned}
minimize subject to f0(x)fi(x)≤0,i=1,...mhi(x)=0,i=1,...p
to describe the problem of finding an
x
x
x that minimizes
f
0
(
x
)
f_0(x)
f0(x) among all
x
x
x that satisfy the conditions
f
i
(
x
)
≤
0
,
i
=
1
,
.
.
.
,
m
f_i(x) ≤ 0, i = 1,...,m
fi(x)≤0,i=1,...,m, and
h
i
(
x
)
=
0
,
i
=
1
,
.
.
.
,
p
h_i(x) = 0, i = 1,...,p
hi(x)=0,i=1,...,p. We call
x
∈
R
n
x ∈ \mathbf{R}^n
x∈Rn the optimization variable and the function
f
0
:
R
n
→
R
f_0 : \mathbf{R}^n \rightarrow \mathbf{R}
f0:Rn→R the objective function or cost function. The inequalities
f
i
(
x
)
≤
0
f_i(x) ≤ 0
fi(x)≤0 are called inequality constraints, and the corresponding functions
f
i
:
R
n
→
R
f_i : \mathbf{R}^n → \mathbf{R}
fi:Rn→R are called the inequality constraint functions. The equations
h
i
(
x
)
=
0
h_i(x) = 0
hi(x)=0 are called the equality constraints, and the functions
h
i
:
R
n
→
R
h_i : \mathbf{R}^n → \mathbf{R}
hi:Rn→R are the equality constraint functions.
Optimal and locally optimal points
We say x ⋆ x^⋆ x⋆ is an optimal point, or solves the problem above, if x ⋆ x^⋆ x⋆ is feasible and f 0 ( x ∗ ) = p ∗ f_0(x^*) = p^* f0(x∗)=p∗.
The set of all optimal points is the optimal set, denoted
X
o
p
t
=
{
x
∣
f
i
(
x
)
≤
0
,
i
=
1
,
.
.
.
,
m
,
h
i
(
x
)
=
0
,
i
=
1
,
.
.
.
,
p
,
f
0
(
x
)
=
p
⋆
}
X_{opt} =\{x|f_i(x)≤0, i=1,...,m, h_i(x)=0, i=1,...,p, f_0(x)=p^⋆\}
Xopt={x∣fi(x)≤0,i=1,...,m,hi(x)=0,i=1,...,p,f0(x)=p⋆}
A feasible point
x
x
x with
f
0
(
x
)
≤
p
⋆
+
ϵ
f_0(x) ≤ p^⋆ + \epsilon
f0(x)≤p⋆+ϵ (where
ϵ
>
0
\epsilon > 0
ϵ>0) is called
ϵ
\epsilon
ϵ-suboptimal, and the set of all
ϵ
\epsilon
ϵ-suboptimal points is called the
ϵ
\epsilon
ϵ-suboptimal set for the problem.
We say a feasible point x is locally optimal if there is an
R
>
0
R > 0
R>0 such that
f
0
(
x
)
=
inf
{
f
0
(
z
)
∣
f
i
(
z
)
≤
0
,
i
=
1
,
.
.
.
,
m
,
h
i
(
z
)
=
0
,
i
=
1
,
.
.
.
,
p
,
∥
z
−
x
∥
2
≤
R
}
f_0(x) = \inf\{f_0(z) \mid f_i(z) ≤ 0, i = 1,...,m,h_i(z)=0, i=1,...,p, ∥z−x∥_2 ≤R\}
f0(x)=inf{f0(z)∣fi(z)≤0,i=1,...,m,hi(z)=0,i=1,...,p,∥z−x∥2≤R}
or, in other words,
x
x
x solves the optimization problem
m
i
n
i
m
i
z
e
f
0
(
z
)
s
u
b
j
e
c
t
t
o
f
i
(
z
)
≤
0
,
i
=
1
,
.
.
.
m
h
i
(
z
)
=
0
,
i
=
1
,
.
.
.
p
∣
∣
z
−
x
∣
∣
2
≤
R
\begin{aligned} {\rm minimize} \ \ \ \ & f_0(z)\\ {\rm subject \ to} \ \ \ \ & f_i(z)\leq0,i=1,...m \\ & h_i(z)=0,i=1,...p \\ & ||z-x||_2 \leq R \end{aligned}
minimize subject to f0(z)fi(z)≤0,i=1,...mhi(z)=0,i=1,...p∣∣z−x∣∣2≤R
Feasibility problems
We call this the feasibility problem, and will sometimes write it as
f
i
n
d
x
s
u
b
j
e
c
t
t
o
f
i
(
x
)
≤
0
,
i
=
1
,
.
.
.
m
h
i
(
x
)
=
0
,
i
=
1
,
.
.
.
p
\begin{aligned} {\rm find} \ \ \ \ & x\\ {\rm subject \ to} \ \ \ \ & f_i(x)\leq0,i=1,...m \\ & h_i(x)=0,i=1,...p \end{aligned}
find subject to xfi(x)≤0,i=1,...mhi(x)=0,i=1,...p
4.1.2 Expressing problems in standard form
A standrad form of an optimization problem is
m
i
n
i
m
i
z
e
f
0
(
x
)
s
u
b
j
e
c
t
t
o
f
i
(
x
)
≤
0
,
i
=
1
,
.
.
.
m
h
i
(
x
)
=
0
,
i
=
1
,
.
.
.
p
\begin{aligned} {\rm minimize} \ \ \ \ & f_0(x)\\ {\rm subject \ to} \ \ \ \ & f_i(x)\leq0,i=1,...m \\ & h_i(x)=0,i=1,...p \end{aligned}
minimize subject to f0(x)fi(x)≤0,i=1,...mhi(x)=0,i=1,...p
Maximization problems
We can solve the maximization problem f f f as minimize − f -f −f.
4.1.3 Equivalent problems
We call two problems equivalent if from a solution of one, a solution of the other is readily found, and vice versa.
Change of variables
Suppose
ϕ
:
R
n
→
R
n
\phi : \mathbf{R}^n → \mathbf{R}^n
ϕ:Rn→Rn is one-to-one, with image covering the problem domain
D
D
D. We define functions
f
i
f_i
fi and
h
i
h_i
hi as
f
i
~
(
z
)
=
f
i
(
ϕ
(
z
)
)
,
i
=
0
,
.
.
.
,
m
,
h
~
i
(
z
)
=
h
i
(
ϕ
(
z
)
)
,
i
=
1
,
.
.
.
p
\tilde{f_i}(z) = f_i(\phi(z)), i = 0,...,m, \ \ \ \ \tilde{h}_i(z) = h_i(\phi(z)),i=1,...p
fi~(z)=fi(ϕ(z)),i=0,...,m, h~i(z)=hi(ϕ(z)),i=1,...p
The problem is equivalent
m
i
n
i
m
i
z
e
f
~
0
(
x
)
s
u
b
j
e
c
t
t
o
f
~
i
(
x
)
≤
0
,
i
=
1
,
.
.
.
m
h
~
i
(
x
)
=
0
,
i
=
1
,
.
.
.
p
\begin{aligned} {\rm minimize} \ \ \ \ & \tilde{f}_0(x)\\ {\rm subject \ to} \ \ \ \ & \tilde{f}_i(x)\leq0,i=1,...m \\ & \tilde{h}_i(x)=0,i=1,...p \end{aligned}
minimize subject to f~0(x)f~i(x)≤0,i=1,...mh~i(x)=0,i=1,...p
We say that the problems are related by the change of variable or substitution of variable
x
=
ϕ
(
z
)
x = \phi(z)
x=ϕ(z).
Transformation of objective and constraint functions
Suppose that
ψ
0
:
R
→
R
\psi_0 : \mathbf{R} → \mathbf{R}
ψ0:R→R is monotone increasing,
ψ
1
,
.
.
.
,
ψ
m
:
R
→
R
\psi_1,...,\psi_m : \mathbf{R} → \mathbf{R}
ψ1,...,ψm:R→R satisfy
ψ
i
(
u
)
≤
0
\psi_i(u)≤0
ψi(u)≤0 if and only if
u
≤
0
u≤0
u≤0, and
ψ
m
+
1
,
.
.
.
,
ψ
m
+
p
:
R
→
R
ψ_{m+1},...,ψ_{m+p} :\mathbf{R} → \mathbf{R}
ψm+1,...,ψm+p:R→R satisfy
ψ
i
(
u
)
=
0
ψ_i(u)=0
ψi(u)=0 if and only if
u
=
0
u = 0
u=0. We define functions
f
~
i
\tilde{f}_i
f~i and
h
~
i
\tilde{h}_i
h~i as the compositions
f
~
i
(
x
)
=
ψ
i
(
f
i
(
x
)
)
,
i
=
0
,
.
.
.
,
m
,
h
~
i
(
x
)
=
ψ
m
+
i
(
h
i
(
x
)
)
,
i
=
1
,
.
.
.
,
p
\tilde{f}_i(x) = ψ_i(f_i(x)), i = 0,...,m,\ \ \ \ \tilde{h}_i(x) = ψ_{m+i}(h_i(x)), i = 1,...,p
f~i(x)=ψi(fi(x)),i=0,...,m, h~i(x)=ψm+i(hi(x)),i=1,...,p
The problem is equivalent
m
i
n
i
m
i
z
e
f
~
0
(
x
)
s
u
b
j
e
c
t
t
o
f
~
i
(
x
)
≤
0
,
i
=
1
,
.
.
.
m
h
~
i
(
x
)
=
0
,
i
=
1
,
.
.
.
p
\begin{aligned} {\rm minimize} \ \ \ \ & \tilde{f}_0(x)\\ {\rm subject \ to} \ \ \ \ & \tilde{f}_i(x)\leq0,i=1,...m \\ & \tilde{h}_i(x)=0,i=1,...p \end{aligned}
minimize subject to f~0(x)f~i(x)≤0,i=1,...mh~i(x)=0,i=1,...p
Slack variables
One simple transformation is based on the observation that
f
i
(
x
)
≤
0
f_i(x) ≤ 0
fi(x)≤0 if and only if there is an
s
i
≥
0
s_i ≥ 0
si≥0 that satisfies
f
i
(
x
)
+
s
i
=
0
f_i(x)+s_i = 0
fi(x)+si=0. The problem is equivalent:
m
i
n
i
m
i
z
e
f
0
(
x
)
s
u
b
j
e
c
t
t
o
s
i
≥
0
f
i
(
x
)
+
s
i
=
0
,
i
=
1
,
.
.
.
m
h
i
(
x
)
=
0
,
i
=
1
,
.
.
.
p
\begin{aligned} {\rm minimize} \ \ \ \ & {f}_0(x)\\ {\rm subject \ to} \ \ \ \ & s_i\geq0 \\ & {f}_i(x)+s_i =0,i=1,...m \\ & {h}_i(x)=0,i=1,...p \end{aligned}
minimize subject to f0(x)si≥0fi(x)+si=0,i=1,...mhi(x)=0,i=1,...p
Where
x
∈
R
n
,
s
∈
R
m
x\in \mathbf{R}^n,s\in\mathbf{R}^m
x∈Rn,s∈Rm.
Eliminating equality constraints
Suppose the functionk
ϕ
:
R
k
→
R
n
\phi : \mathbf{R}^k → \mathbf{R}^n
ϕ:Rk→Rn is such that
x
x
x satisfies if and only if there is some
z
∈
R
z ∈ \mathbf{R}
z∈R such that
x
=
ϕ
(
z
)
x = \phi(z)
x=ϕ(z). The optimization problem
m
i
n
i
m
i
z
e
f
~
0
(
x
)
=
f
0
(
ϕ
(
x
)
s
u
b
j
e
c
t
t
o
f
~
i
(
x
)
=
f
i
(
ϕ
(
x
)
≤
0
,
i
=
1
,
.
.
.
m
\begin{aligned} {\rm minimize} \ \ \ \ & \tilde{f}_0(x) = f_0(\phi(x)\\ {\rm subject \ to} \ \ \ \ & \tilde{f}_i(x) = f_i(\phi(x)\leq0,i=1,...m \\ \end{aligned}
minimize subject to f~0(x)=f0(ϕ(x)f~i(x)=fi(ϕ(x)≤0,i=1,...m
Eliminating linear equality constraints
Substituting
x
=
F
z
+
x
0
x = Fz + x_0
x=Fz+x0 into the original problem yields the problem
m
i
n
i
m
i
z
e
f
0
(
F
z
+
x
0
)
s
u
b
j
e
c
t
t
o
f
i
(
F
z
+
x
0
)
≤
0
,
i
=
1
,
.
.
.
m
\begin{aligned} {\rm minimize} \ \ \ \ & f_0(Fz+x_0)\\ {\rm subject \ to} \ \ \ \ & f_i(Fz+x_0)\leq0,i=1,...m \\ \end{aligned}
minimize subject to f0(Fz+x0)fi(Fz+x0)≤0,i=1,...m
Where
x
x
x is attained by eqauations.
Introducing equality constraints
We can also introduce equality constraints and new variables into a problem.
Optimizing over some variables
We always have
inf
x
,
y
f
(
x
,
y
)
=
inf
x
inf
y
f
(
x
,
y
)
\inf_{x,y}f(x,y)=\inf_x\inf_yf(x,y)
x,yinff(x,y)=xinfyinff(x,y)
In other words, we can always minimize a function by first minimizing over some of the variables, and then minimizing over the remaining ones.
Epigraph problem form
The epigraph form of the standard problem is the problem
m
i
n
i
m
i
z
e
t
s
u
b
j
e
c
t
t
o
f
0
(
x
)
−
t
≤
0
f
i
(
x
)
≤
0
,
i
=
1
,
.
.
.
m
h
i
(
x
)
=
0
,
i
=
1
,
.
.
.
p
\begin{aligned} {\rm minimize} \ \ \ \ & t\\ {\rm subject \ to} \ \ \ \ & f_0(x)-t\leq 0\\ & f_i(x)\leq0,i=1,...m \\ & h_i(x)=0,i=1,...p \end{aligned}
minimize subject to tf0(x)−t≤0fi(x)≤0,i=1,...mhi(x)=0,i=1,...p
We can easily see that it is equivalent to the original problem:
(
x
,
t
)
(x,t)
(x,t) is optimal if and only if
x
x
x is optimal and
t
=
f
0
(
x
)
t = f_0(x)
t=f0(x).
Implicit and explicit constraints
As an extreme example, the standard form problem can be expressed as the unconstrained problem
m
i
n
i
m
i
z
e
F
(
z
)
{\rm minimize} \ \ \ \ F(z)\\
minimize F(z)
where we define the function F as f0, but with domain restricted to the feasible set:
d
o
m
F
=
{
x
∈
d
o
m
f
0
∣
f
i
(
x
)
≤
0
,
i
=
1
,
.
.
.
,
m
,
h
i
(
x
)
=
0
,
i
=
1
,
.
.
.
,
p
}
\mathbf{dom} \ F =\{x∈\mathbf{dom}\ f_0 \mid f_i(x)≤0, i=1,...,m, \ \ \ \ h_i(x)=0, i=1,...,p\}
dom F={x∈dom f0∣fi(x)≤0,i=1,...,m, hi(x)=0,i=1,...,p}
4.1.4 Parameter and oracle problem descriptions
4.2 Convex optimization
4.2.1 Convex optimization problems in standard form
A convex optimization problem is one of the form
m
i
n
i
m
i
z
e
f
0
(
x
)
s
u
b
j
e
c
t
t
o
f
i
(
x
)
≤
0
,
i
=
1
,
.
.
.
m
a
i
T
x
=
b
i
,
i
=
1
,
.
.
.
p
\begin{aligned} {\rm minimize} \ \ \ \ & f_0(x)\\ {\rm subject \ to} \ \ \ \ & f_i(x)\leq0,i=1,...m \\ & a_i^Tx=b_i,i=1,...p \end{aligned}
minimize subject to f0(x)fi(x)≤0,i=1,...maiTx=bi,i=1,...p
where
f
0
,
.
.
.
,
f
m
f_0 , . . . , f_m
f0,...,fm are convex functions.
If f 0 f_0 f0 is quasiconvex instead of convex, we say the problem is a (standard form) quasiconvex optimization problem.
Concave maximization problems
If f 0 f_0 f0 is concave, the optimization problem is concave. This concave maximization problem is readily solved by minimizing the convex objective function − f 0 −f_0 −f0.
Abstract form convex optimization problem
4.2.2 Local and global optima
A fundamental property of convex optimization problems is that any locally optimal point is also (globally) optimal.
4.2.3 An optimality criterion for differentiable f0
Suppose that the objective
f
0
f_0
f0 in a convex optimization problem is differentiable, then
x
x
x is optimal if and only if
x
∈
X
x∈X
x∈X and
∇
f
0
(
x
)
T
(
y
−
x
)
≥
0
f
o
r
a
l
l
y
∈
X
∇f_0(x)^T (y − x) ≥ 0 \ {\rm for \ all} \ y ∈ X
∇f0(x)T(y−x)≥0 for all y∈X
4.2.4 Equivalent convex problems
Eliminating equality constraints
Introducing equality constraints
Slack variables
Introducing slack variables for linear inequalities preserves convexity of a problem.
Epigraph problem form
Minimizing over some variables
4.2.5 Quasiconvex optimization
Solving a quasiconvex optimization problem can be reduced to solving a sequence of convex optimization problems.
Locally optimal solutions and optimality conditions
The most important difference between convex and quasiconvex optimization is that a quasiconvex optimization problem can have locally optimal solutions that are not (globally) optimal.
It follows from the first-order condition for quasiconvexity that
x
x
x is optimal if
∇
f
0
(
x
)
T
(
y
−
x
)
>
0
o
r
a
l
l
y
∈
X
\
{
x
}
∇f_0(x)^T (y − x) > 0 \ {\rm or \ all} \ y ∈ X \ \backslash \{x \}
∇f0(x)T(y−x)>0 or all y∈X \{x}
Quasiconvex optimization via convex feasibility problems
Let
φ
t
:
R
n
→
R
,
t
∈
R
φt : \mathbf{R}^n → \mathbf{R}, t ∈ \mathbf{R}
φt:Rn→R,t∈R, be a family of convex functions that satisfy
ϕ
0
(
x
)
≤
t
⟺
ϕ
t
(
x
)
≤
0
,
\phi_0(x)≤t \Longleftrightarrow \phi_t(x)≤0,
ϕ0(x)≤t⟺ϕt(x)≤0,
and also, for each
x
,
ϕ
s
(
x
)
≤
ϕ
t
(
x
)
w
h
e
n
e
v
e
r
s
≥
t
x, \phi_s(x) ≤ \phi_t(x) {\rm whenever} \ s ≥ t
x,ϕs(x)≤ϕt(x)whenever s≥t.
Let
p
⋆
p^⋆
p⋆ denote the optimal value of the quasiconvex optimization problem, define convex feasibility function
m
i
n
i
m
i
z
e
x
s
u
b
j
e
c
t
t
o
ϕ
t
(
x
)
≤
0
f
i
(
x
)
≤
0
,
i
=
1
,
.
.
.
m
A
x
=
b
\begin{aligned} {\rm minimize} \ \ \ \ & x\\ {\rm subject \ to}\ \ \ \ &\phi_t(x)\leq0 \\ & f_i(x)\leq0,i=1,...m \\ & Ax=b \end{aligned}
minimize subject to xϕt(x)≤0fi(x)≤0,i=1,...mAx=b
This is repeated until the width of the interval is small enough:
4.3 Linear optimization problems
When the objective and constraint functions are all affine, the problem is called a linear program (LP). A general linear program has the form
m
i
n
i
m
i
z
e
c
T
x
+
d
s
u
b
j
e
c
t
t
o
G
x
⪯
h
A
x
=
b
\begin{aligned} {\rm minimize} \ \ \ \ & c^Tx+d \\ {\rm subject \ to} \ \ \ \ & Gx\preceq h \\ & Ax=b \end{aligned}
minimize subject to cTx+dGx⪯hAx=b
where
G
∈
R
m
×
n
a
n
d
A
∈
R
p
×
n
G ∈ \mathbf{R}^{m×n} \ {\rm and} \ A ∈ \mathbf{R} ^{p×n}
G∈Rm×n and A∈Rp×n.
Standard and inequality form linear programs
In a standard form LP the only inequalities are componentwise nonnegativity constraints
x
⪰
0
x \succeq 0
x⪰0:
m
i
n
i
m
i
z
e
c
T
x
s
u
b
j
e
c
t
t
o
A
x
=
b
x
⪰
0
\begin{aligned} {\rm minimize} \ \ \ \ & c^Tx \\ {\rm subject \ to} \ \ \ \ & Ax=b\\ & x\succeq 0 \\ \end{aligned}
minimize subject to cTxAx=bx⪰0
If LP has no equality constraints, it is a inequality form LP:
m
i
n
i
m
i
z
e
c
T
x
s
u
b
j
e
c
t
t
o
A
x
⪯
b
\begin{aligned} {\rm minimize} \ \ \ \ & c^Tx \\ {\rm subject \ to} \ \ \ \ & Ax\preceq b\\ \end{aligned}
minimize subject to cTxAx⪯b
Converting LPs to standard form
It is sometimes useful to transform a general LP to one in standard form. The first step is to introduce slack variables
s
i
s_i
si for the inequalities, which results in
m
i
n
i
m
i
z
e
c
T
x
+
d
s
u
b
j
e
c
t
t
o
G
x
+
s
=
h
A
x
=
b
s
⪰
0
\begin{aligned} {\rm minimize}\ \ \ \ & c^Tx+d \\ {\rm subject \ to} \ \ \ \ & Gx + s = h \\ & Ax=b \\ & s\succeq 0 \end{aligned}
minimize subject to cTx+dGx+s=hAx=bs⪰0
The second step is to express the variable
x
x
x as the difference of two nonnegative variables
x
+
x^+
x+ and
x
−
x^−
x−, i.e.,
x
=
x
+
−
x
−
,
x
+
,
x
−
⪰
0
x = x^+ − x^−, x^+, x^− \succeq 0
x=x+−x−,x+,x−⪰0. This yields the problem
m
i
n
i
m
i
z
e
c
T
(
x
+
−
x
−
)
+
d
s
u
b
j
e
c
t
t
o
G
(
x
+
−
x
−
)
+
s
=
h
A
(
x
+
−
x
−
)
=
b
x
+
,
x
−
,
s
⪰
0
\begin{aligned} {\rm minimize} \ \ \ \ & c^T(x^+-x^-)+d \\ {\rm subject \ to} \ \ \ \ & G(x^+-x^-)+s=h\\ & A(x^+-x^-)=b \\ & x^+, x^−,s \succeq 0 \end{aligned}
minimize subject to cT(x+−x−)+dG(x+−x−)+s=hA(x+−x−)=bx+,x−,s⪰0
4.3.1 Examples
4.3.2 Linear-fractional programming
The problem of minimizing a ratio of affine functions over a polyhedron is called a linear-fractional program:
m
i
n
i
m
i
z
e
f
0
(
x
)
s
u
b
j
e
c
t
t
o
G
x
⪯
h
A
x
=
b
\begin{aligned} {\rm minimize} \ \ \ \ & f_0(x) \\ {\rm subject \ to}\ \ \ \ & Gx \preceq h \\ & Ax=b \\ \end{aligned}
minimize subject to f0(x)Gx⪯hAx=b
Where
f
0
(
x
)
=
c
T
x
+
d
e
T
x
+
f
,
d
o
m
f
0
=
{
x
∣
e
T
x
+
f
>
0
}
f_0(x)=\frac{c^Tx+d}{e^Tx+f}, \mathbf{dom} \ f_0=\{ x\mid e^Tx+f>0 \}
f0(x)=eTx+fcTx+d,dom f0={x∣eTx+f>0}.
Transforming to a linear program
the linear-fractional program can be transformed to an equivalent linear program:
m
i
n
i
m
i
z
e
c
T
y
+
d
z
s
u
b
j
e
c
t
t
o
G
y
−
h
z
⪯
0
A
y
−
b
z
=
0
e
T
y
+
f
z
=
1
z
⪰
0
\begin{aligned} {\rm minimize} \ \ \ \ & c^Ty+dz \\ {\rm subject \ to} \ \ \ \ & Gy-hz\preceq0\\ & Ay-bz=0 \\ & e^Ty+fz=1 \\ & z\succeq 0 \end{aligned}
minimize subject to cTy+dzGy−hz⪯0Ay−bz=0eTy+fz=1z⪰0
Where
y
=
x
e
T
x
+
f
,
z
=
1
e
T
x
+
f
y=\frac{x}{e^Tx+f}, \ z=\frac{1}{e^Tx+f}
y=eTx+fx, z=eTx+f1
Generalized linear-fractional programming
A generalization of the linear-fractional program is the generalized linear-fractional program in which
f
0
(
x
)
=
max
i
=
1
,
.
.
.
,
r
c
i
T
x
+
d
i
e
i
T
x
+
f
i
,
d
o
m
f
0
=
{
x
∣
e
i
T
x
+
f
i
>
0
,
i
=
1
,
.
.
.
,
r
}
f_0(x)=\max_{i=1,...,r}\frac{c^T_ix+d_i}{e^T_ix+f_i}, \ \ \mathbf{dom}\ f_0=\{ x \mid e_i^Tx+f_i>0,i=1,...,r \}
f0(x)=i=1,...,rmaxeiTx+ficiTx+di, dom f0={x∣eiTx+fi>0,i=1,...,r}
4.4 Quadratic optimization problems
The convex optimization problem is called a quadratic program (QP) if the objective function is (convex) quadratic, and the constraint functions are affine:
m
i
n
i
m
i
z
e
1
2
x
T
P
x
+
q
T
x
+
r
s
u
b
j
e
c
t
t
o
G
x
⪯
h
A
x
=
b
\begin{aligned} {\rm minimize} \ \ \ \ & \frac{1}{2}x^TPx+q^Tx+r \\ {\rm subject \ to} \ \ \ \ & Gx\preceq h\\ & Ax=b \\ \end{aligned}
minimize subject to 21xTPx+qTx+rGx⪯hAx=b
where
P
∈
S
+
n
,
P
∈
R
m
×
n
,
A
∈
R
p
×
n
P\in \mathbf{S}^n_+,P\in \mathbf{R}^{m\times n},A\in \mathbf{R}^{p\times n}
P∈S+n,P∈Rm×n,A∈Rp×n.
4.4.1 Examples
4.4.2 Second-order cone programming
A problem that is closely related to quadratic programming is the second-order cone program (SOCP):
m
i
n
i
m
i
z
e
f
T
x
s
u
b
j
e
c
t
t
o
∣
∣
A
i
x
+
b
i
∣
∣
2
≤
c
i
T
x
+
d
i
,
i
=
1
,
.
.
.
,
m
F
x
=
g
\begin{aligned} {\rm minimize} \ \ \ \ & f^Tx \\ {\rm subject \ to} \ \ \ \ & ||A_ix+b_i||_2\leq c_i^Tx+d_i,\ \ i=1,...,m\\ & Fx=g \\ \end{aligned}
minimize subject to fTx∣∣Aix+bi∣∣2≤ciTx+di, i=1,...,mFx=g
The constrain of the form
∥
A
x
+
b
∥
2
≤
c
T
x
+
d
∥Ax+b∥_2 ≤c^Tx+d
∥Ax+b∥2≤cTx+d
a second-order cone constraint.
4.5 Geometric programming
4.5.1 Monomials and posynomials
A function
f
:
R
n
→
R
f:\mathbf{R}^n\rightarrow\mathbf{R}
f:Rn→R with
d
o
m
f
=
R
+
+
n
\mathbf{dom} \ f=\mathbf{R}_{++}^n
dom f=R++n is a monomial function, or simply, a monomial that
f
(
x
)
=
c
x
1
a
1
⋯
x
n
a
n
f(x)=cx_1^{a_1}\cdots x_n^{a_n}
f(x)=cx1a1⋯xnan
where $c>0 \ \mbox{and} \ a_i \in \mathbf{R} $.
A sum of monomials
f
(
x
)
=
∑
k
c
k
x
1
a
1
k
⋯
x
n
a
n
k
f(x)=\sum_kc_kx_1^{a_1k}\cdots x_n^{a_nk}
f(x)=k∑ckx1a1k⋯xnank
where
c
k
>
0
c_k > 0
ck>0, is called a posynomial function (with
K
K
K terms), or simply, a posynomial.
4.5.2 Geometric programming
An optimization problem of the form
m
i
n
i
m
i
z
e
f
0
(
x
)
s
u
b
j
e
c
t
t
o
f
i
(
x
)
≤
1
,
i
=
1
,
.
.
.
m
h
i
(
x
)
=
1
,
i
=
1
,
.
.
.
p
\begin{aligned} {\rm minimize} \ \ \ \ & f_0(x)\\ {\rm subject \ to} \ \ \ \ & f_i(x)\leq1,i=1,...m \\ & h_i(x)=1,i=1,...p \end{aligned}
minimize subject to f0(x)fi(x)≤1,i=1,...mhi(x)=1,i=1,...p
where
f
0
,
.
.
.
,
f
m
f_0, . . . , f_m
f0,...,fm are posynomials and
h
1
,
.
.
.
,
h
p
h_1, . . . , h_p
h1,...,hp are monomials, is called a geometric program (GP).
4.5.3 Geometric program in convex form
Define
y
i
=
log
x
i
y_i=\log x_i
yi=logxi, and take logarithm
m
i
n
i
m
i
z
e
log
∑
k
e
a
0
k
T
y
+
b
0
k
s
u
b
j
e
c
t
t
o
log
∑
k
e
a
i
k
T
y
+
b
i
k
≤
1
,
i
=
1
,
.
.
.
m
g
i
T
y
+
h
i
=
0
,
i
=
1
,
.
.
.
p
\begin{aligned} {\rm minimize} \ \ \ \ & \log \sum_{k}e^{a_{0k}^Ty+b_0k}\\ {\rm subject \ to} \ \ \ \ & \log \sum_{k}e^{a_{ik}^Ty+b_ik} \leq1, \ \ i=1,...m\\ & {g_i^Ty+h_i=0}, \ \ i=1,...p \end{aligned}
minimize subject to logk∑ea0kTy+b0klogk∑eaikTy+bik≤1, i=1,...mgiTy+hi=0, i=1,...p
4.5.4 Examples
4.6 Generalized inequality constraints
The standard form of optimization problem can be extended to vector valued:
m
i
n
i
m
i
z
e
f
0
(
x
)
s
u
b
j
e
c
t
t
o
f
i
(
x
)
⪯
K
i
0
,
i
=
1
,
.
.
.
m
A
x
=
b
\begin{aligned} {\rm minimize} \ \ \ \ & f_0(x)\\ {\rm subject \ to} \ \ \ \ & f_i(x)\preceq_{K_i}0, \ \ \ \ i=1,...m \\ & Ax=b \end{aligned}
minimize subject to f0(x)fi(x)⪯Ki0, i=1,...mAx=b
where
f
0
:
R
n
→
R
,
K
i
∈
R
k
i
f_0:\mathbf{R}^n\rightarrow\mathbf{R},K_i\in\mathbf{R}^{k_i}
f0:Rn→R,Ki∈Rki are proper cones and
f
i
:
R
n
→
R
k
i
f_i:\mathbf{R}^n\rightarrow\mathbf{R}^{k_i}
fi:Rn→Rki are
K
i
K_i
Ki-convex. We refer to this problem as a (standard form) convex optimization problem with generalized inequality constraints.
4.6.1 Conic form problems
Among the simplest convex optimization problems with generalized inequalities are the conic form problems (or cone programs)
m
i
n
i
m
i
z
e
c
T
x
s
u
b
j
e
c
t
t
o
F
x
+
g
⪯
K
0
,
i
=
1
,
.
.
.
m
A
x
=
b
\begin{aligned} {\rm minimize} \ \ \ \ & c^Tx\\ {\rm subject \ to} \ \ \ \ & Fx+g\preceq_{K}0, \ \ \ \ i=1,...m \\ & Ax=b \end{aligned}
minimize subject to cTxFx+g⪯K0, i=1,...mAx=b
4.6.2 Semidefinite programming
When
K
K
K is
S
+
k
\mathbf{S}^k_+
S+k, the cone of positive semidefinite
k
×
k
k × k
k×k matrices, the associated conic form problem is called a semidefinite program (SDP), and has the form
m
i
n
i
m
i
z
e
c
T
x
s
u
b
j
e
c
t
t
o
x
1
F
1
+
⋯
+
x
n
F
n
+
G
⪯
0
,
i
=
1
,
.
.
.
m
A
x
=
b
\begin{aligned} {\rm minimize} \ \ \ \ & c^Tx\\ {\rm subject \ to} \ \ \ \ & x_1F_1+\cdots+x_nF_n+G\preceq_{}0, \ \ \ \ i=1,...m \\ & Ax=b \end{aligned}
minimize subject to cTxx1F1+⋯+xnFn+G⪯0, i=1,...mAx=b
where $G,F_1,…,F_n\in \mathbf{S}^k,A\in \mathbf{R}^{p\times n} $.
4.7 Vector optimization
4.7.1 General and convex vector optimization problems
We denote a general vector optimization problem as
m
i
n
i
m
i
z
e
(
w
i
t
h
r
e
s
p
e
c
t
t
o
K
)
f
0
(
x
)
s
u
b
j
e
c
t
t
o
f
i
(
x
)
≤
0
,
i
=
1
,
.
.
.
m
h
i
(
x
)
=
0
,
i
=
1
,
.
.
.
p
\begin{aligned} {\rm minimize \ (with \ respect \ to \ } K) \ \ \ \ & f_0(x)\\ {\rm subject \ to} \ \ \ \ & f_i(x)\leq0,i=1,...m \\ & h_i(x)=0,i=1,...p \end{aligned}
minimize (with respect to K) subject to f0(x)fi(x)≤0,i=1,...mhi(x)=0,i=1,...p
4.7.2 Optimal points and values
Consider the set of objective values of feasible points,
O
=
{
f
0
(
x
)
∣
∃
x
∈
D
,
f
i
(
x
)
≤
0
,
i
=
1
,
.
.
.
,
m
;
h
i
(
x
)
=
0
,
i
=
1
,
.
.
.
p
}
⊆
R
q
\mathcal{O}=\{ f_0(x) \mid \exist x\in \mathcal{D},f_i(x)\leq0,i=1,...,m;h_i(x)=0,i=1,...p \}\subseteq\mathbf{R}^{q}
O={f0(x)∣∃x∈D,fi(x)≤0,i=1,...,m;hi(x)=0,i=1,...p}⊆Rq
which is called the set of achievable objective values. If this set has a minimum element, i.e., there is a feasible
x
x
x such that
f
0
(
x
)
⪯
K
f
0
(
y
)
f_0(x) \preceq_K f_0(y)
f0(x)⪯Kf0(y) for all feasible
y
y
y, then we say
x
x
x is optimal for the problem, and refer to
f
0
(
x
)
f_0(x)
f0(x) as the optimal value of the problem.
4.7.3 Pareto optimal points and values
Thus, a point x x x is Pareto optimal if it is feasible and, for any feasible y , f 0 ( y ) ⪯ K f 0 ( x ) y, f_0(y) \preceq _K f_0(x) y,f0(y)⪯Kf0(x) implies f 0 ( y ) = f 0 ( x ) f_0(y) = f_0(x) f0(y)=f0(x).
4.7.4 Scalarization
Scalarization is a standard technique for finding Pareto optimal (or optimal) points for a vector optimization problem. Choose any
λ
≻
K
∗
0
λ \succ _{K^∗} 0
λ≻K∗0, i.e., any vector that is positive in the dual generalized inequality. Now consider the scalar optimization problem
m
i
n
i
m
i
z
e
λ
T
f
0
(
x
)
s
u
b
j
e
c
t
t
o
f
i
(
x
)
≤
0
,
i
=
1
,
.
.
.
m
h
i
(
x
)
=
0
,
i
=
1
,
.
.
.
p
\begin{aligned} {\rm minimize} \ \ \ \ & \lambda^Tf_0(x)\\ {\rm subject \ to}\ \ \ \ & f_i(x)\leq0,i=1,...m \\ & h_i(x)=0,i=1,...p \end{aligned}
minimize subject to λTf0(x)fi(x)≤0,i=1,...mhi(x)=0,i=1,...p
4.7.5 Multicriterion optimization
In other words,
x
⋆
x^⋆
x⋆ is simultaneously optimal for each of the scalar problems
m
i
n
i
m
i
z
e
F
j
(
x
)
s
u
b
j
e
c
t
t
o
f
i
(
x
)
≤
0
,
i
=
1
,
.
.
.
m
h
i
(
x
)
=
0
,
i
=
1
,
.
.
.
p
\begin{aligned} {\rm minimize} \ \ \ \ & F_j(x)\\ {\rm subject \ to} \ \ \ \ & f_i(x)\leq0,i=1,...m \\ & h_i(x)=0,i=1,...p \end{aligned}
minimize subject to Fj(x)fi(x)≤0,i=1,...mhi(x)=0,i=1,...p
it is called a multicriterion or multi-objective optimization problem.