FCN(fully convolutional networks),RPN(Region Proposal Network),FPN(feature pyramid networks)反卷积和空洞卷积
1.FCN(fully convolutional networks 全卷积网络)
FCN将传统CNN中的全连接层转化成一个个的卷积层。如下图所示,在传统的CNN结构中,前5层是卷积层,第6层和第7层分别是一个长度为4096的一维向量,第8层是长度为1000的一维向量,分别对应1000个类别的概率。FCN将这3层表示为卷积层,卷积核的大小(通道数,宽,高)分别为(4096,1,1)、(4096,1,1)、(1000,1,1)。所有的层都是卷积层,故称为全卷积网络。
可以发现,经过多次卷积(还有pooling)以后,得到的图像越来越小,分辨率越来越低(粗略的图像),那么FCN是如何得到图像中每一个像素的类别的呢?为了从这个分辨率低的粗略图像恢复到原图的分辨率,FCN使用了上采样。例如经过5次卷积(和pooling)以后,图像的分辨率依次缩小了2,4,8,16,32倍。对于最后一层的输出图像,需要进行32倍的上采样,以得到原图一样的大小。
这个上采样是通过反卷积(deconvolution)实现的。对第5层的输出(32倍放大)反卷积到原图大小,得到的结果还是不够精确,一些细节无法恢复。于是Jonathan将第4层的输出和第3层的输出也依次反卷积,分别需要16倍和8倍上采样,结果就精细一些了。下图是这个卷积和反卷积上采样的过程:
下图是32倍,16倍和8倍上采样得到的结果的对比,可以看到它们得到的结果越来越精确:
FCN的优点和不足
与传统用CNN进行图像分割的方法相比,FCN有两大明显的优点:一是可以接受任意大小的输入图像,而不用要求所有的训练图像和测试图像具有同样的尺寸。二是更加高效,因为避免了由于使用像素块而带来的重复存储和计算卷积的问题。
同时FCN的缺点也比较明显:一是得到的结果还是不够精细。进行8倍上采样虽然比32倍的效果好了很多,但是上采样的结果还是比较模糊和平滑,对图像中的细节不敏感。二是对各个像素进行分类,没有充分考虑像素与像素之间的关系,忽略了在通常的基于像素分类的分割方法中使用的空间规整(spatial regularization)步骤,缺乏空间一致性。
&CRF=======
2.RPN(Region Proposal Network 区域候选网络)
生成两个loss,分类和回归,分类有两个结果前景背景,回归对应坐标位置(x,y,h,w),对应生成的anchor(锚点),每个anchor对应生成不同比例的框
NMS(非极大值抑制)
由于锚点经常重叠,因此建议最终也会在同一个目标上重叠。为了解决重复建议的问题,我们使用一个简单的算法,称为非极大抑制(NMS)。NMS 获取按照分数排序的建议列表并对已排序的列表进行迭代,丢弃那些 IoU 值大于某个预定义阈值的建议,并提出一个具有更高分数的建议。
3.FPN(feature pyramid networks 特征金字塔网络)
图像中存在不同尺寸的目标,而不同的目标具有不同的特征,利用浅层的特征就可以将简单的目标的区分开来;利用深层的特征可以将复杂的目标区分开来;这样我们就需要这样的一个特征金字塔来完成这件事。图中我们在第1层(请看绿色标注)输出较大目标的实例分割结果,在第2层输出次大目标的实例检测结果,在第3层输出较小目标的实例分割结果。检测也是一样,我们会在第1层输出简单的目标,第2层输出较复杂的目标,第3层输出复杂的目标。
4.反卷积
实际上是卷积的逆过程
5.空洞卷积
空洞卷积(Dilated convolutions)在卷积的时候,会在卷积核元素之间塞入空格