基于Tensorflow的手写文字的识别
代码
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
def add_layer(inputs, in_size, out_size, activation_function=None):
Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='w')
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1,name= 'b')
Wx_plus_b = tf.matmul(inputs, Weights)+biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
def compute_accuracy(v_xs, v_ys):
global prediction
y_pre = sess.run(prediction, feed_dict={xs:v_xs})
correct_prediction = tf.equal(tf.argmax(y_pre, 1), tf.argmax(v_ys, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
result = sess.run(accuracy, feed_dict={xs:v_xs, ys:v_ys})
return result
mnist = input_data.read_data_sets('MNIST_DATA', one_hot=True)
xs = tf.placeholder(tf.float32, [None, 784])
ys = tf.placeholder(tf.float32, [None, 10])
prediction = add_layer(xs, 784, 10, activation_function=tf.nn.softmax)
cross_entry = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entry)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={xs:batch_xs, ys:batch_ys})
if i % 50 == 0:
print(compute_accuracy(mnist.test.images, mnist.test.labels))
效果