MCE公司:小分子化合物在重编程中的应用
干细胞(stemcell)是一类具有自我更新的多潜能细胞。在一定条件下,它可以分化成多种功能细胞。干细胞具有分化成多种细胞的多潜能特性,使其在医学领域具有广泛的应用前景,可应用于肿瘤、心血管系统疾病、代谢系统疾病、血液系统疾病等多个领域,被成为“万用细胞”。但是干细胞的实际应用仍然受到一些问题的制约,如伦理学问题、干细胞数目不足、病人的排异反应等。为了解决这些潜在问题,使干细胞技术得到更广泛的应用,诱导多能干细胞技术应运而生。
2006 年,日本科学家山中伸弥等人利用四个转录因子(Oct4、Sox2、Klf4和c-Myc)将小鼠胚胎成纤维细胞(MEFs)和成体成纤维细胞重编程为诱导多能干细胞(induced pluripotent stem cells, iPSCs)[1],iPSCs 和胚胎多能干细胞(embryonic stem cells, ESCs)一样,具有自我更新的能力,在体外可以长期扩增,并能够分化为三个胚层的组织和细胞。这一研究成果使得重编程的研究工作如火如荼。
重编程(reprogramming )是指通过一定的手段使已经分化的细胞回复到具有分化能力的干细胞的状态。根据所用方法的不同,重编程可以分为转录因子介导的重编程和非转录因子的重编程。非转录因子介导的重编程常用的方法为小分子化合物。
小分子化合物在重编程领域具有得天独厚的优势。首先,小分子化合物避免了转录因子介导重编程常用到的病毒载体整合进基因组,不会破坏细胞基因组的结果,安全性较高;其次,大部分小分子化合物均能以渗透的方式进入细胞内发挥作用,省去了细胞转染、病毒包装、细胞感染等繁琐步骤,且便于进行定量研究,可操作性强;此外,小分子化合物结构多样、靶点清晰、价格低廉、易于获得且可选择性大;最后,小分子化合物价格相对低廉,可节省大量成本。
2011 年,中国科学家邓宏魁等人发现,化合物组合(VPA, CHIR99021, 616452, Tranylcypromine)可以成功替代 YAMANAKA 四因子(OSKM)中的三个转录因子(Sox2/Klf4/c-Myc),与 Oct4 一起作用将小鼠成纤维细胞重编程为多能干细胞[2]。接下来,通过 10000 个化合物的筛选,邓宏魁团队又发现了可以代替 Oct4 的化合物组合。从而实现了纯化合物组合(VPA, CHIR99021, Repsox, Forskolin, Tranylcypromine, DZNep)介导的重编程,该研究成果于 2013 年发表在 Science上[3]。之后,利用小分子化合物诱导体细胞重编程又取得了很多新的进展,见表1。此外,除了将体细胞重编程为 iPSCs 之外,科学家们还发现小分子化合物还可以成功将一种体细胞诱导转化为另一种体细胞,该过程叫做转分化。目前,仅用小分子化合物成功实现转分化的报道主要集中在神经细胞、心肌细胞等领域 [8]。