论文阅读】4- 4-Points Congruent Sets for Robust Pairwise Surface Registration

1、基础知识回顾

2、算法理解

  • 解决问题:点云模型的拼接(基于4共面点的匹配,计算仿射矩阵)
    ??疑惑:(前提)点云模型相差仿射变换,而不是更一般性的射影变换??
  • 扩展:点云模型在相差相似变换下,进行拼接

2.1、算法综述:

论文阅读】4- 4-Points Congruent Sets for Robust Pairwise Surface Registration

2.2、procedure

2.2.1、Point set P \Q

2.2.2、Bi={a,b,c,d} ----Uij = { uij1,uij2,uij3,uij4}

  1. 综述
    论文阅读】4- 4-Points Congruent Sets for Robust Pairwise Surface Registration

  2. details:

  • Bi:P中近似的共面点,wide base & overlap fraction)–计算ratio r1/r2
  • 根据仿射变换的不变量:线段比例,寻找Q中的Ui = {Uij} Uij = { uij1,uij2,uij3,uij4}
    其中Uij = { uij1,uij2,uij3,uij4}中四点满足约束:e1 = e2(误差范围内相同)----包含近似共面的约束

1)寻找Uij的方法
论文阅读】4- 4-Points Congruent Sets for Robust Pairwise Surface Registration

其中,对于Pair point(q1,q2)
论文阅读】4- 4-Points Congruent Sets for Robust Pairwise Surface Registration

2)减少{q1,q2}搜索代价:

  • a standard data structure—range tree 邻域搜索 ||q1-q2||~d_ab/d_cd
  • local descriptor (eg: normal )—前提:accurancy
    利用normal 计算二面角:N(q1,q2)~N(a,b)/N(c,d) N(x,y):点xy处表面的二面角

2.2.3、 验证 Bi—Ui

  1. 对Ui中的每一个Uij,Bi-Uij,最小二乘,计算仿射变换参数Tij(若不能唯一确定Tij,x选择Bi’[Bi’与Bi 有两个公共点])
  2. Tij( P ) vs Q, point set 相似/邻近度计算(ANN,distance ,threshold, number of points)—得到Ti_best
    实质:largest common pointset(LCP) measure

2.2.4、 L个Bi,计算T_opt(结合RANSAC)

2.3、算法分析

  • Robustness: Gaussian noise
  • Compare with LD-RANSAC( spin-image descriptor\ integral invariant)
  • Strong points: noise, outlier, flat, featureless, no-preprocess
  • Limited: slippable (玻璃容器,光滑??)