Caffe实战系列:实现自己Caffe网络层
原文:http://blog.****.net/xizero00/article/details/52529341
由于之前介绍过一次关于实现自己的网络层的文章,但是那篇文章偏难,这次我以最简单的对图像进行缩放的层为例进行实现。
在进行讲解之前,有一些必要条件你需要掌握,那就是你已经很了解怎么安装caffe,并且知道caffe里头的各个目录。
首先我们设计我们层所拥有的参数
out_height,即输出的图像的高度
out_width,即输出图像的宽度
visualize,是否需要将图像显示出来
那么可以在src/caffe/proto/caffe.proto文件中加入如下代码:
- message ImageScaleParameter {
- // Specify the output height and width
- optional uint32 out_height = 1;
- optional uint32 out_width = 2;
- // for debug you can see the source images and scaled images
- optional bool visualize = 3 [default = false];
- }
这里就指定了参数的名称以及参数的类型,optional说明该参数是可选的可以出现也可以不出现,此外[default=false]表明该参数的默认值是false
每个参数都指定一个数字表明参数的标识。
接着,我们可以将我们设计好的参数放入LayerParameter里头:
- optional HingeLossParameter hinge_loss_param = 114;
- optional ImageDataParameter image_data_param = 115;
- optional ImageScaleParameter image_scale_param = 147;
- optional InfogainLossParameter infogain_loss_param = 116;
- optional InnerProductParameter inner_product_param = 117;
注意加入的时候看一看LayerParameter的注释,当你修改完毕了也要注意加入这样提示,这样方便后人更加方便地添加自定义层
// LayerParameter next available layer-specific ID: 148 (last added: image_scale_param)
接下来我们实现我们自己的层的头文件:
(1)实现的首先需要设置不允许头文件重复加入的宏定义:
- #ifndef CAFFE_IMAGE_SCALE_LAYER_HPP_
- #define CAFFE_IMAGE_SCALE_LAYER_HPP_
(2)加入必要的头文件
- #include "caffe/blob.hpp"
- #include "caffe/layer.hpp"
- #include "caffe/proto/caffe.pb.h"
- #include "caffe/layer.hpp"
(3)加入返回的层的类型字符串
- virtual inline const char* type() const { return "ImageScale"; }
(4)告诉caffe本层的输入有几个,输出有几个
- virtual inline int ExactNumBottomBlobs() const { return 1; }
- virtual inline int ExactNumTopBlobs() const { return 1; }
(5)由于本层实现是图像的缩放,所以不需要反传,因此直接写一个空的虚函数的实现
- virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
- const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {};
(6)定义在使用过程中所使用的类中的成员变量,注意类的成员变量的命名最后是以下划线结束,这样能够保持与caffe的代码一致性
- int out_height_;
- int out_width_;
- int height_;
- int width_;
- bool visualize_;
- int num_images_;
- int num_channels_;
(7)最后别忘记加入endif这个宏,此外注意加入必要的注释,以表明这个endif所对应的开头是什么
- #endif // CAFFE_IMAGE_SCALE_LAYER_HPP_
下面给出详细的头文件代码:
- #ifndef CAFFE_IMAGE_SCALE_LAYER_HPP_
- #define CAFFE_IMAGE_SCALE_LAYER_HPP_
- #include "caffe/blob.hpp"
- #include "caffe/layer.hpp"
- #include "caffe/proto/caffe.pb.h"
- #include "caffe/layer.hpp"
- namespace caffe {
- // written by xizero00 2016/9/13
- template <typename Dtype>
- class ImageScaleLayer : public Layer<Dtype> {
- public:
- explicit ImageScaleLayer(const LayerParameter& param)
- : Layer<Dtype>(param) {}
- virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
- const vector<Blob<Dtype>*>& top);
- virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
- const vector<Blob<Dtype>*>& top);
- virtual inline const char* type() const { return "ImageScale"; }
- virtual inline int ExactNumBottomBlobs() const { return 1; }
- virtual inline int ExactNumTopBlobs() const { return 1; }
- protected:
- /// @copydoc ImageScaleLayer
- virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
- const vector<Blob<Dtype>*>& top);
- virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
- const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {};
- int out_height_;
- int out_width_;
- int height_;
- int width_;
- bool visualize_;
- int num_images_;
- int num_channels_;
- };
- } // namespace caffe
- #endif // CAFFE_IMAGE_SCALE_LAYER_HPP_
接下来写具体的层的设置以及层的前传的实现:
(8)加入必要的头文件
- #include "caffe/layers/image_scale_layer.hpp"
- #include "caffe/util/math_functions.hpp"
- #include <opencv2/opencv.hpp>
(9)实现层的设置函数LayerSetUp,在该函数中将网络的配置参数读取到类中的成员变量中,便于前传的时候以及对层进行设置的时候使用,并且检查参数的合法性
- template <typename Dtype>
- void ImageScaleLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,
- const vector<Blob<Dtype>*>& top) {
- // get parameters
- const ImageScaleParameter& param = this->layer_param_.image_scale_param();
- // get the output size
- out_height_ = param.out_height();
- out_width_ = param.out_width();
- visualize_ = param.visualize();
- // get the input size
- num_images_ = bottom[0]->num();
- height_ = bottom[0]->height();
- width_ = bottom[0]->width();
- num_channels_ = bottom[0]->channels();
- // check the channels must be images
- // channel must be 1 or 3, gray image or color image
- CHECK_EQ( (num_channels_==3) || (num_channels_ == 1), true);
- // check the output size
- CHECK_GT(out_height_, 0);
- CHECK_GT(out_height_, 0);
- }
(10)实现层的Reshape函数,来设定该层的输出的大小,我们使用从网络配置文件中的参数类设置输出的大小
- template <typename Dtype>
- void ImageScaleLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom,
- const vector<Blob<Dtype>*>& top) {
- // reshape the outputs
- top[0]->Reshape(num_images_, num_channels_, out_height_, out_width_);
- }
(11)实现前向传播函数Forward_cpu,我实现的就是将图像一幅一幅地进行缩放到配置文件中所给的大小。
- template <typename Dtype>
- void ImageScaleLayer<Dtype>::Forward_cpu(
- const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
- const Dtype* bottom_data = bottom[0]->cpu_data();
- Dtype * top_data = top[0]->mutable_cpu_data();
- cv::Mat srcimage, dstimage;
- // precompurte the index
- const int srcimagesize = width_ * height_;
- const int dstimagesize = out_width_ * out_height_;
- const int srcchimagesize = srcimagesize * num_channels_;
- const int dstchimagesize = dstimagesize * num_channels_;
- for ( int idx_img = 0; idx_img < num_images_; idx_img++ )
- {
- // zeros source images and scaled images
- srcimage = cv::Mat::zeros(height_, width_, CV_32FC1);
- dstimage = cv::Mat::zeros(out_height_, out_width_, CV_32FC1);
- // read from bottom[0]
- for ( int idx_ch = 0; idx_ch < num_channels_; idx_ch++ )
- {
- for (int i = 0; i < height_; i++)
- {
- for ( int j=0; j < width_; j++ )
- {
- int image_idx = idx_img * srcchimagesize + srcimagesize * idx_ch + height_ *i + j;
- srcimage.at<float>(i,j) = (float)bottom_data[image_idx];
- }
- }
- }
- // resize to specified size
- // here we use linear interpolation
- cv::resize(srcimage, dstimage, dstimage.size());
- // store the resized image to top[0]
- for (int idx_ch = 0; idx_ch < num_channels_; idx_ch++)
- {
- for (int i = 0; i < out_height_; i++)
- {
- for (int j = 0; j < out_width_; j++)
- {
- int image_idx = idx_img * dstchimagesize + dstimagesize * idx_ch + out_height_*i + j;
- top_data[image_idx] = dstimage.at<float>(i,j);
- }
- }
- }
- if (visualize_)
- {
- cv::namedWindow("src image", CV_WINDOW_AUTOSIZE);
- cv::namedWindow("dst image", CV_WINDOW_AUTOSIZE);
- cv::imshow("src image", srcimage);
- cv::imshow("dst image", dstimage);
- cv::waitKey(0);
- }
- }
- }
最后给出完整的实现:
- #include "caffe/layers/image_scale_layer.hpp"
- #include "caffe/util/math_functions.hpp"
- #include <opencv2/opencv.hpp>
- namespace caffe {
- template <typename Dtype>
- void ImageScaleLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,
- const vector<Blob<Dtype>*>& top) {
- // get parameters
- const ImageScaleParameter& param = this->layer_param_.image_scale_param();
- // get the output size
- out_height_ = param.out_height();
- out_width_ = param.out_width();
- visualize_ = param.visualize();
- // get the input size
- num_images_ = bottom[0]->num();
- height_ = bottom[0]->height();
- width_ = bottom[0]->width();
- num_channels_ = bottom[0]->channels();
- // check the channels must be images
- // channel must be 1 or 3, gray image or color image
- CHECK_EQ( (num_channels_==3) || (num_channels_ == 1), true);
- // check the output size
- CHECK_GT(out_height_, 0);
- CHECK_GT(out_height_, 0);
- }
- template <typename Dtype>
- void ImageScaleLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom,
- const vector<Blob<Dtype>*>& top) {
- // reshape the outputs
- top[0]->Reshape(num_images_, num_channels_, out_height_, out_width_);
- }
- template <typename Dtype>
- void ImageScaleLayer<Dtype>::Forward_cpu(
- const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
- const Dtype* bottom_data = bottom[0]->cpu_data();
- Dtype * top_data = top[0]->mutable_cpu_data();
- cv::Mat srcimage, dstimage;
- // precompurte the index
- const int srcimagesize = width_ * height_;
- const int dstimagesize = out_width_ * out_height_;
- const int srcchimagesize = srcimagesize * num_channels_;
- const int dstchimagesize = dstimagesize * num_channels_;
- for ( int idx_img = 0; idx_img < num_images_; idx_img++ )
- {
- // zeros source images and scaled images
- srcimage = cv::Mat::zeros(height_, width_, CV_32FC1);
- dstimage = cv::Mat::zeros(out_height_, out_width_, CV_32FC1);
- // read from bottom[0]
- for ( int idx_ch = 0; idx_ch < num_channels_; idx_ch++ )
- {
- for (int i = 0; i < height_; i++)
- {
- for ( int j=0; j < width_; j++ )
- {
- int image_idx = idx_img * srcchimagesize + srcimagesize * idx_ch + height_ *i + j;
- srcimage.at<float>(i,j) = (float)bottom_data[image_idx];
- }
- }
- }
- // resize to specified size
- // here we use linear interpolation
- cv::resize(srcimage, dstimage, dstimage.size());
- // store the resized image to top[0]
- for (int idx_ch = 0; idx_ch < num_channels_; idx_ch++)
- {
- for (int i = 0; i < out_height_; i++)
- {
- for (int j = 0; j < out_width_; j++)
- {
- int image_idx = idx_img * dstchimagesize + dstimagesize * idx_ch + out_height_*i + j;
- top_data[image_idx] = dstimage.at<float>(i,j);
- }
- }
- }
- if (visualize_)
- {
- cv::namedWindow("src image", CV_WINDOW_AUTOSIZE);
- cv::namedWindow("dst image", CV_WINDOW_AUTOSIZE);
- cv::imshow("src image", srcimage);
- cv::imshow("dst image", dstimage);
- cv::waitKey(0);
- }
- }
- }
- #ifdef CPU_ONLY
- STUB_GPU(ImageScaleLayer);
- #endif
- INSTANTIATE_CLASS(ImageScaleLayer);
- REGISTER_LAYER_CLASS(ImageScale);
- } // namespace caffe
请把上述代码,保存为image_scale_layer.hpp和cpp。然后放入到对应的include和src/caffe/layers文件夹中。
那么在使用的时候可以进行如下配置
- layer {
- name: "imagescaled"
- type: "ImageScale"
- bottom: "data"
- top: "imagescaled"
- image_scale_param {
- out_height: 128
- out_width: 128
- visualize: true
- }
- }
上述配置中out_height和out_width就是经过缩放之后的图片的大小,而visualize表明是否显示的意思。
至此,我们就完成了一个很简单的caffe自定义层的实现,怎么样,很简单吧?
我测试的模型(我想你肯定知道怎么用caffe所听的工具将mnist数据集转换为lmdb吧)是:
- # Simple single-layer network to showcase editing model parameters.
- name: "sample"
- layer {
- name: "data"
- type: "Data"
- top: "data"
- include {
- phase: TRAIN
- }
- transform_param {
- scale: 0.0039215684
- }
- data_param {
- source: "examples/mnist/mnist_train_lmdb"
- batch_size: 10
- backend: LMDB
- }
- }
- layer {
- name: "imagescaled"
- type: "ImageScale"
- bottom: "data"
- top: "imagescaled"
- image_scale_param {
- out_height: 128
- out_width: 128
- visualize: true
- }
- }
测试所用的solver.prototxt
- net: "examples/imagescale/sample.prototxt"
- base_lr: 0.01
- lr_policy: "step"
- gamma: 0.1
- stepsize: 10000
- display: 1
- max_iter: 1
- weight_decay: 0.0005
- snapshot: 1
- snapshot_prefix: "examples/imagescale/sample"
- momentum: 0.9
- # solver mode: CPU or GPU
- solver_mode: GPU
然后运行的时候仅仅需要写个bash文件到caffe的目录:
- #!/usr/bin/env sh
- set -e
- snap_dir="examples/imagescale/snapshots"
- mkdir -p $snap_dir
- TOOLS=./build/tools
- $TOOLS/caffe train \
- --solver=examples/imagescale/solver.prototxt 2>&1 | tee -a $snap_dir/train.log
下面给出我的结果:
小的是输入的原始图像,大的是经过缩放之后的图像。
好了,到此结束。
代码打包下载,请戳这里
http://download.****.net/detail/xizero00/9629898