【电力电子】【2018】数字标牌的能量采集设计与实现
本文为美国加利福尼亚大学(作者:Chang, Andrew Yok-Wah)的博士论文,共279页。
随着能量采集传感器功率密度的提高,以及通信收发机系统、显示器、传感器和能量感知微处理器的功率降低,智能无线网络节点在我们的日常生活中变得无处不在。随着智能无线网络节点与应用空间的融合,数字标牌取代了传统的标牌和徽章,因此受到更多人的欢迎。但是,传统的主电池源为数字标牌提供能源,这会产生浪费和维护成本,从而对使用数字标牌产生不利影响。
因此,在加州大学戴维斯分校开发了一个名为无线显示传感器节点(WDSN)的数字标牌原型,该原型带有一个微功率光伏能量收集系统,作为本研究的替代方案。WDSN和节点管理系统由电泳显示、Wi-Fi无线、光伏和振动功率传感器、互联网连接管理系统、传感器和功率采集电力电子设备组成。采用整体能源方法推动拟议数字徽章和标牌的发展。该方法包括振动和光伏能源的特性描述,分析典型数字标牌的能源需求,并开发一个能最大限度地延长寿命并允许数字标牌自给自足的能量收集管理系统。为了弥合能量源与所需外围电源之间的间隙,设计了多输入多输出(MIMO)H桥DC-DC变换器,以采集和调节光伏能量,并将能量传递给WDSN的各种连续有功的充电、执行负载。H桥DC-DC变换器由一个电感、两个来自一次和二次电源的输入功率场效应管和五个对称输出功率场效应管组成,用于创建各种供电轨道,为无线电、显示器、传感器和微控制器提供所需的调节能量。对于充电和执行电源,开发了恒流斜坡充电,将光伏电池最大功率点电流的电荷转移到支持充电和执行电源生成的外围设备的电源电容器。
本文提出的MIMO H桥DC-DC变换器支持对大电流负载进行脉宽调制、对小电流负载进行脉频调制、对电容负载进行斜坡充电的主动调节。控制器采用数字逻辑设计,根据功率晶体管的尺寸选择,整个MIMO H桥DC-DC转换器的面积为0.36平方毫米至1.63平方毫米。测量的瞬时峰值功率效率是86%,在驱动一个63uA负载的瞬态能量效率为81%。原型WDSN消耗933 mJ以完成服务器数据同步和显示刷新。当提供振动和光伏发电时,WDSN更新能量相当于7.52小时的休闲连续行走(34.44uw)、1230个实验室门开关(开关门需要消耗986uw)、连续工作12小时的办公室照明(上午7点至下午7点,在平均538 Lux的CFL照明下每天共计958mJ)。
With improvements in power harvesting transducers’ power density, and power reduction in communication transceiver systems, displays, sensors and energy-aware microprocessors, smart wireless network nodes are becoming ubiquitous throughout our daily life. Digital signage has gained popularity with the integration of smart wireless network nodes into the application space replacing traditional signage and badges. Primary battery sources traditionally supply energy for digital signage, however, that generates waste and maintenance costs that are counterproductive to using digital signage. Therefore, a digital signage prototype called the wireless display sensor node (WDSN) with a micro-power photovoltaic energy harvesting system was developed at UC Davis and is presented as an alternative in this work. The WDSN and node management system is comprised of an electrophoretic display, Wi-Fi radio, photovoltaic and vibration power transducers, internet connected management system, sensors and power harvesting power electronics. A holistic energy approach was used to drive the development of the proposed digital badge and signage. This approach encompasses the characterization of vibrational and photovoltaic energy sources, analyzing the energy requirement from typical digital signage and developing a power harvesting energy management system that will maximize the lifetime and allow for self sufficiency of the digital signage. To bridge the gap between the energy source and the required peripheral supplies, a multiple input and multiple outputs (MIMO) H-bridge DC to DC converter was designed to harvest and regulate photovoltaic energy, and deliver energy to the various continuously active, and charge-and-execute loads of the WDSN. The H-bridge DC to DC converter comprising of a single inductor, two input power FETs from both primary and secondary power sources, and five symmetric output power FETs to create the various supply rails, supply the regulated energy required for the radio, the display, the sensors and the microcontroller. For the charge-and-execute supplies, a constant current ramp charging was developed to transfer charge at the maximum power point current of the photovoltaic cell to the supply capacitors of the peripherals that support the charge-and-execute supply generation. The MIMO H-bridge DC to DC converter presented supports active regulation using pulse width modulation for high current loads, pulse frequency modulation for light current loads, and ramp charging for capacitive loads. The controller was designed using digital logic and the entire MIMO H-bridge DC to DC converter occupies an area of 0.36 mm2 to 1.63 mm2 depending on the power transistor size selection. The measured instantaneous peak power efficiency is 86% while driving a 63 ?A load with a transient energy efficiency delivered to the load is 81%. The prototype WDSN dissipates 933 mJ to complete a server data synchronization and display refresh. The WDSN update energy when supplied with vibrational and photovoltaic power harvesting is equivalent to 7.52 hours of casual continuous walking (34.44 ?W), 1,230 laboratory door toggles (open and close at 986 ?W) and 12 hours of continuous office lighting (7 am to 7 pm with a daily total of 958 mJ under an average of 538 Lux of CFL lighting).
1 引言
2 数字标牌的振动能量采集
3 数字标牌的室内光伏能量采集
4 无线显示传感器节点(WDSN)的设计与性能
5 恒流充电电源设备(斜坡充电)
6 数字标牌的多输入多输出(MIMO)H桥直流-直流变换器
7 结论与未来研究工作展望
附录A 相同圆柱形磁铁之间的排斥力
附录B 输入加速度与输出负载电压之间的关系
下载英文原文地址:
http://page2.dfpan.com/fs/alcfj2f21b291168e94/
更多精彩文章请关注微信号: