应用最小二乘法C语言实现线损电压补偿-原理篇1

最小二乘法的应用-C语言实现线损电压补偿-最小二乘法的基本原理

最小二乘法的基本原理

转载心得: 因为 数学老师没教好 我没学好 的缘故, 其实我也只停留在知道的层面而已;
作为使用者, 把这个理论当作一个完美的模块, 把模块接口用上就对了,哈哈 ^_^

转载 马同学高等数学 的文章

转载来自马同学高等数学的文章如何理解最小二乘法?

最小平方法是十九世纪统计学的主题曲。 从许多方面来看, 它之于统计学就相当于十八世纪的微积分之于数学。

----乔治·斯蒂格勒的《The History of Statistics》

1 日用而不知

来看一个生活中的例子。比如说,有五把尺子:

应用最小二乘法C语言实现线损电压补偿-原理篇1

用它们来分别测量一线段的长度,得到的数值分别为(颜色指不同的尺子):

应用最小二乘法C语言实现线损电压补偿-原理篇1

之所以出现不同的值可能因为:

  • 不同厂家的尺子的生产精度不同

  • 尺子材质不同,热胀冷缩不一样

  • 测量的时候心情起伏不定

  • ......

总之就是有误差,这种情况下,一般取平均值来作为线段的长度:

应用最小二乘法C语言实现线损电压补偿-原理篇1

日常中就是这么使用的。可是作为很事'er的数学爱好者,自然要想下:

  • 这样做有道理吗?

  • 用调和平均数行不行?

  • 用中位数行不行?

  • 用几何平均数行不行?

2 最小二乘法

换一种思路来思考刚才的问题。

首先,把测试得到的值画在笛卡尔坐标系中,分别记作应用最小二乘法C语言实现线损电压补偿-原理篇1 :

应用最小二乘法C语言实现线损电压补偿-原理篇1

其次,把要猜测的线段长度的真实值用平行于横轴的直线来表示(因为是猜测的,所以用虚线来画),记作应用最小二乘法C语言实现线损电压补偿-原理篇1 :

应用最小二乘法C语言实现线损电压补偿-原理篇1

每个点都向应用最小二乘法C语言实现线损电压补偿-原理篇1 做垂线,垂线的长度就是应用最小二乘法C语言实现线损电压补偿-原理篇1 ,也可以理解为测量值和真实值之间的误差:

应用最小二乘法C语言实现线损电压补偿-原理篇1

因为误差是长度,还要取绝对值,计算起来麻烦,就干脆用平方来代表误差:

应用最小二乘法C语言实现线损电压补偿-原理篇1

总的误差的平方就是:

应用最小二乘法C语言实现线损电压补偿-原理篇1

因为应用最小二乘法C语言实现线损电压补偿-原理篇1 是猜测的,所以可以不断变换:

应用最小二乘法C语言实现线损电压补偿-原理篇1

自然,总的误差应用最小二乘法C语言实现线损电压补偿-原理篇1 也是在不断变化的。

应用最小二乘法C语言实现线损电压补偿-原理篇1

法国数学家,阿德里安-馬里·勒讓德(1752-1833,这个头像有点抽象)提出让总的误差的平方最小的应用最小二乘法C语言实现线损电压补偿-原理篇1 就是真值,这是基于,如果误差是随机的,应该围绕真值上下波动(关于这点可以看下“如何理解无偏估计?”)。

这就是最小二乘法,即:

应用最小二乘法C语言实现线损电压补偿-原理篇1

这个猜想也蛮符合直觉的,来算一下。

这是一个二次函数,对其求导,导数为0的时候取得最小值:

应用最小二乘法C语言实现线损电压补偿-原理篇1

进而:

应用最小二乘法C语言实现线损电压补偿-原理篇1

正好是算术平均数。

原来算术平均数可以让误差最小啊,这下看来选用它显得讲道理了。

以下这种方法:

应用最小二乘法C语言实现线损电压补偿-原理篇1

就是最小二乘法,所谓“二乘”就是平方的意思,台湾直接翻译为最小平方法。

3 推广

算术平均数只是最小二乘法的特例,适用范围比较狭窄。而最小二乘法用途就广泛。

比如温度与冰淇淋的销量:

应用最小二乘法C语言实现线损电压补偿-原理篇1

看上去像是某种线性关系:

应用最小二乘法C语言实现线损电压补偿-原理篇1

可以假设这种线性关系为:

应用最小二乘法C语言实现线损电压补偿-原理篇1

通过最小二乘法的思想:

应用最小二乘法C语言实现线损电压补偿-原理篇1

上图的应用最小二乘法C语言实现线损电压补偿-原理篇1 分别为:

应用最小二乘法C语言实现线损电压补偿-原理篇1

总误差的平方为:

应用最小二乘法C语言实现线损电压补偿-原理篇1

不同的应用最小二乘法C语言实现线损电压补偿-原理篇1 会导致不同的应用最小二乘法C语言实现线损电压补偿-原理篇1 ,根据多元微积分的知识,当:

应用最小二乘法C语言实现线损电压补偿-原理篇1

这个时候应用最小二乘法C语言实现线损电压补偿-原理篇1 取最小值。

对于应用最小二乘法C语言实现线损电压补偿-原理篇1 而言,上述方程组为线性方程组,用之前的数据解出来:

应用最小二乘法C语言实现线损电压补偿-原理篇1

也就是这根直线:

应用最小二乘法C语言实现线损电压补偿-原理篇1

其实,还可以假设:

应用最小二乘法C语言实现线损电压补偿-原理篇1

在这个假设下,可以根据最小二乘法,算出应用最小二乘法C语言实现线损电压补偿-原理篇1 ,得到下面这根红色的二次曲线:

应用最小二乘法C语言实现线损电压补偿-原理篇1

同一组数据,选择不同的应用最小二乘法C语言实现线损电压补偿-原理篇1 ,通过最小二乘法可以得到不一样的拟合曲线(出处):

应用最小二乘法C语言实现线损电压补偿-原理篇1

不同的数据,更可以选择不同的应用最小二乘法C语言实现线损电压补偿-原理篇1 ,通过最小二乘法可以得到不一样的拟合曲线:

应用最小二乘法C语言实现线损电压补偿-原理篇1

应用最小二乘法C语言实现线损电压补偿-原理篇1 也不能选择任意的函数,还是有一些讲究的,这里就不介绍了。

4 最小二乘法与正态分布

我们对勒让德的猜测,即最小二乘法,仍然抱有怀疑,万一这个猜测是错误的怎么办?

应用最小二乘法C语言实现线损电压补偿-原理篇1

数学王子高斯(1777-1855)也像我们一样心存怀疑。

高斯换了一个思考框架,通过概率统计那一套来思考。

让我们回到最初测量线段长度的问题。高斯想,通过测量得到了这些值:

应用最小二乘法C语言实现线损电压补偿-原理篇1

每次的测量值应用最小二乘法C语言实现线损电压补偿-原理篇1 都和线段长度的真值应用最小二乘法C语言实现线损电压补偿-原理篇1 之间存在一个误差:

应用最小二乘法C语言实现线损电压补偿-原理篇1

这些误差最终会形成一个概率分布,只是现在不知道误差的概率分布是什么。假设概率密度函数为:

应用最小二乘法C语言实现线损电压补偿-原理篇1

再假设一个联合概率密度函数,这样方便把所有的测量数据利用起来:

应用最小二乘法C语言实现线损电压补偿-原理篇1

讲到这里,有些同学可能已经看出来了上面似然函数了(关于似然函数以及马上要讲到的极大似然估计,可以参考“如何理解极大似然估计法?”)。

因为应用最小二乘法C语言实现线损电压补偿-原理篇1 是关于应用最小二乘法C语言实现线损电压补偿-原理篇1 的函数,并且也是一个概率密度函数(下面分布图形是随便画的):

应用最小二乘法C语言实现线损电压补偿-原理篇1

根据极大似然估计的思想,概率最大的最应该出现(既然都出现了,而我又不是“天选之才”,那么自然不会是发生了小概率事件),也就是应该取到下面这点:

应用最小二乘法C语言实现线损电压补偿-原理篇1

当下面这个式子成立时,取得最大值:

应用最小二乘法C语言实现线损电压补偿-原理篇1

然后高斯想,最小二乘法给出的答案是:

应用最小二乘法C语言实现线损电压补偿-原理篇1

如果最小二乘法是对的,那么应用最小二乘法C语言实现线损电压补偿-原理篇1 时应该取得最大值,即:

应用最小二乘法C语言实现线损电压补偿-原理篇1

好,现在可以来解这个微分方程了。最终得到:

应用最小二乘法C语言实现线损电压补偿-原理篇1

这是什么?这就是正态分布啊。

并且这还是一个充要条件:

应用最小二乘法C语言实现线损电压补偿-原理篇1

也就是说,如果误差的分布是正态分布,那么最小二乘法得到的就是最有可能的值。

那么误差的分布是正态分布吗?

我们相信,误差是由于随机的、无数的、独立的、多个因素造成的,比如之前提到的:

  • 不同厂家的尺子的生产精度不同

  • 尺子材质不同,热胀冷缩不一样

  • 测量的时候心情起伏不定

  • ......

那么根据中心极限定理(参考“为什么正态分布如此常见?”),误差的分布就应该是正态分布。

因为高斯的努力,才真正奠定了最小二乘法的重要地位。

文章最新版本在(有可能会有后续更新):如何理解最小二乘法?

转载完毕, 接下来是应用场景<一段不可精确测出的回路电阻>

一段不可精确测出的回路电阻

应用场景2

求出最小二乘法的系数

代码篇3