2007哈尔滨工业大学801控制原理第五题
(1)
劳斯表
s
3
1
0.1
s
2
1.1
K
s
1
0.11
−
K
1.1
s
0
K
\begin{matrix} s^3& 1 & 0.1 & \\ s^2& 1.1 & K & \\ s^1& \frac{0.11-K}{1.1} & & \\ s^0& K \end{matrix}
s3s2s1s011.11.10.11−KK0.1K
当
0
<
K
<
11
0<K<11
0<K<11时,系统稳定。
(2)
取
ω
c
=
3
r
a
d
/
s
\omega_c=3rad/s
ωc=3rad/s,设校正装置的传递函数为
G
c
1
(
s
)
=
T
1
s
+
1
T
2
s
+
1
G_{c1}(s)=\frac{T_1s+1}{T_2s+1}
Gc1(s)=T2s+1T1s+1
令
γ
1
=
180
°
−
90
°
−
arctan
ω
c
−
arctan
0.1
ω
c
−
arctan
T
2
ω
c
=
0
\gamma_1=180°-90°-\arctan\omega_c-\arctan0.1\omega_c-\arctan T_2\omega_c=0
γ1=180°−90°−arctanωc−arctan0.1ωc−arctanT2ωc=0
解得
T
2
=
0.111
T_2=0.111
T2=0.111
则
arctan
T
1
ω
c
=
45
°
\arctan T_1\omega_c=45°
arctanT1ωc=45°
解得
T
1
=
0.333
T_1=0.333
T1=0.333
对应的
K
K
K为
K
0.33
3
2
ω
c
2
+
1
ω
c
ω
c
2
+
1
0.01
ω
c
2
+
1
0.11
1
2
ω
c
2
+
1
=
1
\frac{K\sqrt{0.333^2\omega_c^2+1}}{\omega_c\sqrt{\omega_c^2+1}\sqrt{0.01\omega_c^2+1}\sqrt{0.111^2\omega_c^2+1}}=1
ωcωc2+1
0.01ωc2+1
0.1112ωc2+1
K0.3332ωc2+1
=1
解得
K
=
7.385
K=7.385
K=7.385
校正装置的传递函数为
G
c
1
(
s
)
=
0.333
s
+
1
0.111
s
+
1
G_{c1}(s)=\frac{0.333s+1}{0.111s+1}
Gc1(s)=0.111s+10.333s+1
(3)
要使系统的动态性能不变,则使用滞后校正,设校正装置的传递函数为
G
c
2
=
K
c
(
T
s
+
1
)
b
T
s
+
1
G_{c2}=\frac{K_c(Ts+1)}{bTs+1}
Gc2=bTs+1Kc(Ts+1)
速度误差为原来的
1
/
10
1/10
1/10,取
K
c
=
10
K_c=10
Kc=10,由(2)可知
ω
c
=
3
r
a
d
/
s
\omega_c=3rad/s
ωc=3rad/s,则
20
lg
∣
K
c
G
(
j
ω
c
)
G
c
1
(
j
ω
c
)
∣
=
20
lg
b
20\lg|K_cG(j\omega_c)G_{c1}(j\omega_c)|=20\lg b
20lg∣KcG(jωc)Gc1(jωc)∣=20lgb
解得
b
=
10
b=10
b=10
由
1
T
=
0.1
ω
c
\frac{1}{T}=0.1\omega_c
T1=0.1ωc
得
T
=
3.33
T=3.33
T=3.33
则校正装置的传递函数为
G
c
2
=
10
(
3.33
s
+
1
)
33.33
s
+
1
G_{c2}=\frac{10(3.33s+1)}{33.33s+1}
Gc2=33.33s+110(3.33s+1)