win10 caffe python Faster-RCNN训练自己数据集(转)
根据自己的数据集修改文件
1.模型配置文件
我用end2end的方式训练,这里我用vgg_cnn_m_1024为例说明。所以我们先打开models\pascal_voc\VGG_CNN_M_1024\faster_rcnn_end2end\train.prototxt,有4处需要修改
[plain] view plain copy
print?
- <span style="font-size:14px;">layer {
- name: 'input-data'
- type: 'Python'
- top: 'data'
- top: 'im_info'
- top: 'gt_boxes'
- python_param {
- module: 'roi_data_layer.layer'
- layer: 'RoIDataLayer'
- param_str: "'num_classes': 3" #这里改为你训练类别数+1
- }
- }</span>
layer { name: 'input-data' type: 'Python' top: 'data' top: 'im_info' top: 'gt_boxes' python_param { module: 'roi_data_layer.layer' layer: 'RoIDataLayer' param_str: "'num_classes': 3" #这里改为你训练类别数+1 } }
[plain] view plain copy
print?
- <span style="font-size:14px;">layer {
- name: 'roi-data'
- type: 'Python'
- bottom: 'rpn_rois'
- bottom: 'gt_boxes'
- top: 'rois'
- top: 'labels'
- top: 'bbox_targets'
- top: 'bbox_inside_weights'
- top: 'bbox_outside_weights'
- python_param {
- module: 'rpn.proposal_target_layer'
- layer: 'ProposalTargetLayer'
- param_str: "'num_classes': 3" #这里改为你训练类别数+1
- }
- }</span>
layer { name: 'roi-data' type: 'Python' bottom: 'rpn_rois' bottom: 'gt_boxes' top: 'rois' top: 'labels' top: 'bbox_targets' top: 'bbox_inside_weights' top: 'bbox_outside_weights' python_param { module: 'rpn.proposal_target_layer' layer: 'ProposalTargetLayer' param_str: "'num_classes': 3" #这里改为你训练类别数+1 } }[plain] view plain copy
print?
- <span style="font-size:14px;">layer {
- name: "cls_score"
- type: "InnerProduct"
- bottom: "fc7"
- top: "cls_score"
- param {
- lr_mult: 1
- }
- param {
- lr_mult: 2
- }
- inner_product_param {
- num_output: 3 #这里改为你训练类别数+1
- weight_filler {
- type: "gaussian"
- std: 0.01
- }
- bias_filler {
- type: "constant"
- value: 0
- }
- }
- }
- layer {
- name: "bbox_pred"
- type: "InnerProduct"
- bottom: "fc7"
- top: "bbox_pred"
- param {
- lr_mult: 1
- }
- param {
- lr_mult: 2
- }
- inner_product_param {
- num_output: 12 #这里改为你的(类别数+1)*4
- weight_filler {
- type: "gaussian"
- std: 0.001
- }
- bias_filler {
- type: "constant"
- value: 0
- }
- }
- }</span>
layer { name: "cls_score" type: "InnerProduct" bottom: "fc7" top: "cls_score" param { lr_mult: 1 } param { lr_mult: 2 } inner_product_param { num_output: 3 #这里改为你训练类别数+1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "bbox_pred" type: "InnerProduct" bottom: "fc7" top: "bbox_pred" param { lr_mult: 1 } param { lr_mult: 2 } inner_product_param { num_output: 12 #这里改为你的(类别数+1)*4 weight_filler { type: "gaussian" std: 0.001 } bias_filler { type: "constant" value: 0 } } }然后我们修改models\pascal_voc\VGG_CNN_M_1024\faster_rcnn_end2end\test.prototxt。
[plain] view plain copy
print?
- <span style="font-size:14px;">layer {
- name: "relu7"
- type: "ReLU"
- bottom: "fc7"
- top: "fc7"
- }
- layer {
- name: "cls_score"
- type: "InnerProduct"
- bottom: "fc7"
- top: "cls_score"
- param {
- lr_mult: 1
- decay_mult: 1
- }
- param {
- lr_mult: 2
- decay_mult: 0
- }
- inner_product_param {
- num_output: 3 </span><span style="font-size:14px;"> #这里改为你训练类别数+1</span><span style="font-size:14px;">
- </span><span style="font-size:14px;"></span>
layer { name: "relu7" type: "ReLU" bottom: "fc7" top: "fc7" } layer { name: "cls_score" type: "InnerProduct" bottom: "fc7" top: "cls_score" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 3 #这里改为你训练类别数+1[plain] view plain copy
print?
- <span style="font-size:14px;"> weight_filler {
- type: "gaussian"
- std: 0.01
- }
- bias_filler {
- type: "constant"
- value: 0
- }
- }
- }
- layer {
- name: "bbox_pred"
- type: "InnerProduct"
- bottom: "fc7"
- top: "bbox_pred"
- param {
- lr_mult: 1
- decay_mult: 1
- }
- param {
- lr_mult: 2
- decay_mult: 0
- }
- inner_product_param {
- num_output: 12 </span><span style="font-size:14px;"> #这里改为你的(类别数+1)*4</span><span style="font-size:14px;">
- </span>
weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "bbox_pred" type: "InnerProduct" bottom: "fc7" top: "bbox_pred" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 12 #这里改为你的(类别数+1)*4[plain] view plain copy
print?
- <span style="font-size:14px;"> weight_filler {
- type: "gaussian"
- std: 0.001
- }
- bias_filler {
- type: "constant"
- value: 0
- }
- }
- }</span>
weight_filler { type: "gaussian" std: 0.001 } bias_filler { type: "constant" value: 0 } } }
另外在 solver里可以调训练的学习率等参数,在这篇文章里不做说明
==================以下修改lib中的文件==================
2.修改imdb.py
[python] view plain copy
print?
- <span style="font-size:14px;"> def append_flipped_images(self):
- num_images = self.num_images
- widths = [PIL.Image.open(self.image_path_at(i)).size[0]
- for i in xrange(num_images)]
- for i in xrange(num_images):
- boxes = self.roidb[i]['boxes'].copy()
- oldx1 = boxes[:, 0].copy()
- oldx2 = boxes[:, 2].copy()
- boxes[:, 0] = widths[i] - oldx2 - 1
- boxes[:, 2] = widths[i] - oldx1 - 1
- for b in range(len(boxes)):
- if boxes[b][2]< boxes[b][0]:
- boxes[b][0] = 0
- assert (boxes[:, 2] >= boxes[:, 0]).all()
- entry = {'boxes' : boxes,
- 'gt_overlaps' : self.roidb[i]['gt_overlaps'],
- 'gt_classes' : self.roidb[i]['gt_classes'],
- 'flipped' : True}
- self.roidb.append(entry)
- self._image_index = self._image_index * 2 </span>
def append_flipped_images(self): num_images = self.num_images widths = [PIL.Image.open(self.image_path_at(i)).size[0] for i in xrange(num_images)] for i in xrange(num_images): boxes = self.roidb[i]['boxes'].copy() oldx1 = boxes[:, 0].copy() oldx2 = boxes[:, 2].copy() boxes[:, 0] = widths[i] - oldx2 - 1 boxes[:, 2] = widths[i] - oldx1 - 1 for b in range(len(boxes)): if boxes[b][2]< boxes[b][0]: boxes[b][0] = 0 assert (boxes[:, 2] >= boxes[:, 0]).all() entry = {'boxes' : boxes, 'gt_overlaps' : self.roidb[i]['gt_overlaps'], 'gt_classes' : self.roidb[i]['gt_classes'], 'flipped' : True} self.roidb.append(entry) self._image_index = self._image_index * 2找到这个函数,并修改为如上
3、修改rpn层的5个文件
在如下目录下,将文件中param_str_全部改为param_str
4、修改config.py
将训练和测试的proposals改为gt
[plain] view plain copy
print?
- <span style="font-size:14px;"># Train using these proposals
- __C.TRAIN.PROPOSAL_METHOD = 'gt'
- # Test using these proposals
- __C.TEST.PROPOSAL_METHOD = 'gt</span>
# Train using these proposals __C.TRAIN.PROPOSAL_METHOD = 'gt' # Test using these proposals __C.TEST.PROPOSAL_METHOD = 'gt
5、修改pascal_voc.py
因为我们使用VOC来训练,所以这个是我们主要修改的训练的文件。
[plain] view plain copy
print?
- <span style="font-size:14px;"> def __init__(self, image_set, year, devkit_path=None):
- imdb.__init__(self, 'voc_' + year + '_' + image_set)
- self._year = year
- self._image_set = image_set
- self._devkit_path = self._get_default_path() if devkit_path is None \
- else devkit_path
- self._data_path = os.path.join(self._devkit_path, 'VOC' + self._year)
- self._classes = ('__background__', # always index 0
- 'cn-character','seal')
- self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
- self._image_ext = '.jpg'
- self._image_index = self._load_image_set_index()
- # Default to roidb handler
- self._roidb_handler = self.selective_search_roidb
- self._salt = str(uuid.uuid4())
- self._comp_id = 'comp4'</span>
def __init__(self, image_set, year, devkit_path=None): imdb.__init__(self, 'voc_' + year + '_' + image_set) self._year = year self._image_set = image_set self._devkit_path = self._get_default_path() if devkit_path is None \ else devkit_path self._data_path = os.path.join(self._devkit_path, 'VOC' + self._year) self._classes = ('__background__', # always index 0 'cn-character','seal') self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes))) self._image_ext = '.jpg' self._image_index = self._load_image_set_index() # Default to roidb handler self._roidb_handler = self.selective_search_roidb self._salt = str(uuid.uuid4()) self._comp_id = 'comp4'
在self.classes这里,'__background__'使我们的背景类,不要动他。下面的改为你自己标签的内容。
修改以下2段内容。否则你的test部分一定会出问题。
[python] view plain copy
print?
- def _get_voc_results_file_template(self):
- # VOCdevkit/results/VOC2007/Main/<comp_id>_det_test_aeroplane.txt
- filename = self._get_comp_id() + '_det_' + self._image_set + '_{:s}.txt'
- path = os.path.join(
- self._devkit_path,
- 'VOC' + self._year,
- ImageSets,
- 'Main',
- '{}' + '_test.txt')
- return path
def _get_voc_results_file_template(self): # VOCdevkit/results/VOC2007/Main/<comp_id>_det_test_aeroplane.txt filename = self._get_comp_id() + '_det_' + self._image_set + '_{:s}.txt' path = os.path.join( self._devkit_path, 'VOC' + self._year, ImageSets, 'Main', '{}' + '_test.txt') return path[python] view plain copy
print?
- def _write_voc_results_file(self, all_boxes):
- for cls_ind, cls in enumerate(self.classes):
- if cls == '__background__':
- continue
- print 'Writing {} VOC results file'.format(cls)
- filename = self._get_voc_results_file_template().format(cls)
- with open(filename, 'w+') as f:
- for im_ind, index in enumerate(self.image_index):
- dets = all_boxes[cls_ind][im_ind]
- if dets == []:
- continue
- # the VOCdevkit expects 1-based indices
- for k in xrange(dets.shape[0]):
- f.write('{:s} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n'.
- format(index, dets[k, -1],
- dets[k, 0] + 1, dets[k, 1] + 1,
- dets[k, 2] + 1, dets[k, 3] + 1))
def _write_voc_results_file(self, all_boxes): for cls_ind, cls in enumerate(self.classes): if cls == '__background__': continue print 'Writing {} VOC results file'.format(cls) filename = self._get_voc_results_file_template().format(cls) with open(filename, 'w+') as f: for im_ind, index in enumerate(self.image_index): dets = all_boxes[cls_ind][im_ind] if dets == []: continue # the VOCdevkit expects 1-based indices for k in xrange(dets.shape[0]): f.write('{:s} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n'. format(index, dets[k, -1], dets[k, 0] + 1, dets[k, 1] + 1, dets[k, 2] + 1, dets[k, 3] + 1))
三、end2end训练
1、删除缓存文件
每次训练前将data\cache 和 data\VOCdevkit2007\annotations_cache中的文件删除。
2、开始训练
在py-faster-rcnn的根目录下打开git bash输入
[plain] view plain copy
print?
- <span style="font-size:18px;">./experiments/scripts/faster_rcnn_end2end.sh 0 VGG_CNN_M_1024 pascal_voc</span>
./experiments/scripts/faster_rcnn_end2end.sh 0 VGG_CNN_M_1024 pascal_voc
当然你可以去experiments\scripts\faster_rcnn_end2end.sh中调自己的训练的一些参数,也可以中VGG16、ZF模型去训练。我这里就用默认给的参数说明。
出现了这种东西的话,那就是训练成功了。用vgg1024的话还是很快的,还是要看你的配置,我用1080ti的话也就85min左右。我就没有让他训练结束了。
四、测试
训练完成之后,将output中的最终模型拷贝到data/faster_rcnn_models,修改tools下的demo.py,我是使用VGG_CNN_M_1024这个中型网络,不是默认的ZF,所以要改的地方挺多
1. 修改class
1 2 3 4 5 6 7 8 9 10 11 12 |
CLASSES = ('__background__', 'Blouse', 'Sweatpants', 'Cardigan', 'Button-Down', 'Cutoffs', 'Chinos', 'Top', 'Anorak', 'Kimono', 'Tank', 'Robe', 'Parka', 'Jodhpurs', 'Halter', 'Shorts', 'Caftan','Turtleneck', 'Leggings', 'Joggers', 'Hoodie', 'Culottes', 'Sweater', 'Flannel', 'Jeggings', 'Blazer', 'Onesie', 'Coat', 'Henley', 'Jacket', 'Trunks', 'Gauchos', 'Sweatshorts', 'Romper', 'Jersey', 'Bomber', 'Sarong', 'Dress','Jeans', 'Tee', 'Coverup', 'Capris', 'Kaftan','Peacoat', 'Poncho', 'Skirt', 'Jumpsuit') |
2. 增加你自己训练的模型
1 2 3 4 5 |
NETS = {'vgg16': ('VGG16', 'VGG16_faster_rcnn_final.caffemodel'), 'zf': ('ZF', 'ZF_faster_rcnn_final.caffemodel'), 'myvgg1024':('VGG_CNN_M_1024','vgg_cnn_m_1024_faster_rcnn_iter_70000.caffemodel')} |
3. 修改prototxt,如果你用的是ZF,就不用改了
1 2 |
prototxt = os.path.join(cfg.MODELS_DIR, NETS[args.demo_net][0], 'faster_rcnn_end2end', 'test.prototxt') |
if __name__ == '__main__': cfg.TEST.HAS_RPN = True # Use RPN for proposals args = parse_args() prototxt = os.path.join(cfg.MODELS_DIR, NETS[args.demo_net][0], 'faster_rcnn_end2end', 'test.prototxt') caffemodel = os.path.join(cfg.DATA_DIR, 'faster_rcnn_models', NETS[args.demo_net][1]) if not os.path.isfile(caffemodel): raise IOError(('{:s} not found.\nDid you run ./data/script/' 'fetch_faster_rcnn_models.sh?').format(caffemodel)) if args.cpu_mode: caffe.set_mode_cpu() else: caffe.set_mode_gpu() caffe.set_device(args.gpu_id) cfg.GPU_ID = args.gpu_id net = caffe.Net(prototxt, caffemodel, caffe.TEST) print '\n\nLoaded network {:s}'.format(caffemodel) # Warmup on a dummy image im = 128 * np.ones((300, 500, 3), dtype=np.uint8) for i in xrange(2): _, _= im_detect(net, im) im_names = ['f1.jpg','f8.jpg','f7.jpg','f6.jpg','f5.jpg','f4.jpg','f3.jpg','f2.jpg',] for im_name in im_names: print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' print 'Demo for data/demo/{}'.format(im_name) demo(net, im_name) plt.show()
在这个部分,将你要测试的图片写在im_names里,并把图片放在data\demo这个文件夹下。
4. 开始检测
执行 ./tools/demo.py –net myvgg1024
假如不想那么麻烦输入参数,可以在demo的parse_args()里修改默认参数
parser.add_argument(‘–net’, dest=’demo_net’, help=’Network to use [myvgg1024]’,
choices=NETS.keys(), default=’myvgg1024’)
这样只需要输入 ./tools/demo.py 就可以了