【含源码】无人机实时分层三维路径规划算法的开发

【含源码】无人机实时分层三维路径规划算法的开发

【含源码】无人机实时分层三维路径规划算法的开发

 

本文为美国马里兰大学(作者:MatthewDavid Solomon)的硕士论文,共95页。

无人机经常在部分或完全未知的环境中飞行。当无人机穿越环境并检测到新的障碍物时,路径的快速重新规划对于避免碰撞至关重要。本文提出了一种新的分层D* Lite(HD*)算法,该算法将增量D* Lite算法与一种新的分层路径规划方法相结合,能够快速地重新规划路径,实现实时操作。与当前的分层规划算法不同,HD*在规划新路径之前不需要进行地图更正。定向成本比例因子、路径平滑和Catmull-Rom样条用于确保生成的路径是可行的,但HD*牺牲了实时性能的最佳特性,其计算时间和路径质量取决于地图大小、障碍物密度、传感器范围以及对规划时间的限制。对用于测试的最复杂场景,HD*在35毫秒内找到了10%的最佳路径

Unmanned aerial vehicles (UAVs) frequentlyoperate in partially or entirely unknown environments. As the vehicle traversesthe environment and detects new obstacles, rapid path replanning is essentialto avoid collisions. This thesis presents a new algorithm called HierarchicalD* Lite (HD*), which combines the incremental algorithm D* Lite with a novelhierarchical path planning approach to replan paths sufficiently fast forreal-time operation. Unlike current hierarchical planning algorithms, HD* doesnot require map corrections before planning a new path. Directional cost scalefactors, path smoothing, and Catmull-Rom splines are used to ensure theresulting paths are feasible. HD* sacrifices optimality for real-timeperformance. Its computation time and path quality are dependent on the mapsize, obstacle density, sensor range, and any restrictions on planning time.For the most complex scenarios tested, HD* found paths within 10% of optimal inunder 35 milliseconds.

1 引言

2 项目背景

3 已有算法回顾

4 将算法扩展到三维场景

5 提升路径质量的方法

6 提升算法性能的途径

7 实验结果

8 未来研究工作展望与结论

附录A HD*算法伪码

获取完整资料