【算法笔记】散列表(下)

1.案例一:LRU 缓存淘汰算法

一个缓冲系统主要包含下面几个操作:

  • 往缓冲中添加一个数据
  • 从缓冲中删除一个数据
  • 在缓冲中查找一个数据

以上三个操作都要涉及“查找”操作,只用链表的话,时间复杂度只能是O(n).如果将散列表和链表两种数据结构组合使用,可以i将这三个操作的时间复杂度降低到O(1);
【算法笔记】散列表(下)
使用双向链表存储数据,链表中的每个结点处理存储数据(data)、前驱指针(prev)、后继指针(next)之外,还新增了一个特殊的字段 hnext。

散列表是通过链表法解决散列冲突的,所以每个结点会在两条链中。一个链是刚刚我们提到的双向链表,另一个链是散列表中的拉链。前驱和后继指针是为了将结点串在双向链表中,hnext 指针是为了将结点串在散列表的拉链中。

2.案例二:Redis 有序集合

Redis 有序集合的操作,那就是下面这样:

  • 添加一个成员对象;
  • 按照键值来删除一个成员对象;
  • 按照键值来查找一个成员对象;
  • 按照分值区间查找数据,比如查找积分在 [100, 356] 之间的成员对象;
  • 按照分值从小到大排序成员变量;

3.案例三:Java LinkedHashMap

LinkedHashMap 是通过双向链表和散列表这两种数据结构组合实现的。LinkedHashMap 中的“Linked”实际上是指的是双向链表,并非指用链表法解决散列冲突。

4.总结

散列表这种数据结构虽然支持非常高效的数据插入、删除、查找操作,但是散列表中的数据都是通过散列函数打乱之后无规律存储的。也就说,它无法支持按照某种顺序快速地遍历数据。如果希望按照顺序遍历散列表中的数据,那我们需要将散列表中的数据拷贝到数组中,然后排序,再遍历。
因为散列表是动态数据结构,不停地有数据的插入、删除,所以每当我们希望按顺序遍历散列表中的数据的时候,都需要先排序,那效率势必会很低。为了解决这个问题,我们将散列表和链表(或者跳表)结合在一起使用。