带你深入了解二叉树
1.树形结构
1.1 概念
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看 起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:每个结点有零个或多个子结点;没 有父结点的结点称为根结点;每一个非根结点有且只有一个父结点;除了根结点外,每个子结点可以分为多个不相交子树.
1.2 概念(重要)
节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
叶子节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I…等节点为叶节点
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
根结点:一棵树中,没有双亲结点的结点;如上图:A
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
1.3 概念(了解)
非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G…等节点为分支节点
兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
森林:由m(m>=0)棵互不相交的树的集合称为森林
2,二叉树(重点)
2.1概念
一棵二叉树是结点的一个有限集合,该集合或者为空,或者是由一个根节点加上两棵别称为左子树和右子树的二叉 树组成。
二叉树的特点:
- 每个结点最多有两棵子树,即二叉树不存在度大于 2 的结点。
- 二叉树的子树有左右之分,其子树的次序不能颠倒。
2.2二叉树的基本形态
2.3两种特殊的二叉树
1,完全二叉树
完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n 个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全 二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
2. 满二叉树
一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果
一个二叉树的层数为K,且结点总数是(2^k) -1 ,则它就是满二叉树。