基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

转载自:https://www.cnblogs.com/skyfsm/p/6806246.html

 

object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别。object detection要解决的问题就是物体在哪里,是什么这整个流程的问题。然而,这个问题可不是那么容易解决的,物体的尺寸变化范围很大,摆放物体的角度,姿态不定,而且可以出现在图片的任何地方,更何况物体还可以是多个类别。

object detection技术的演进:
RCNN->SppNET->Fast-RCNN->Faster-RCNN

从图像识别的任务说起
这里有一个图像任务:
既要把图中的物体识别出来,又要用方框框出它的位置。

基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

 

上面的任务用专业的说法就是:图像识别+定位
图像识别(classification):
输入:图片
输出:物体的类别
评估方法:准确率

基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

定位(localization):
输入:图片
输出:方框在图片中的位置(x,y,w,h)
评估方法:检测评价函数 intersection-over-union ( IOU ) 

基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

卷积神经网络CNN已经帮我们完成了图像识别(判定是猫还是狗)的任务了,我们只需要添加一些额外的功能来完成定位任务即可。

定位的问题的解决思路有哪些?
思路一:看做回归问题
看做回归问题,我们需要预测出(x,y,w,h)四个参数的值,从而得出方框的位置。

基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

步骤1:
  • 先解决简单问题, 搭一个识别图像的神经网络
  • 在AlexNet VGG GoogleLenet上fine-tuning一下

基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

 

步骤2:
  • 在上述神经网络的尾部展开(也就说CNN前面保持不变,我们对CNN的结尾处作出改进:加了两个头:“分类头”和“回归头”)
  • 成为classification + regression模式

基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN


步骤3:
  • Regression那个部分用欧氏距离损失
  • 使用SGD训练

 

步骤4:
  • 预测阶段把2个头部拼上
  • 完成不同的功能

 


这里需要进行两次fine-tuning
第一次在ALexNet上做,第二次将头部改成regression head,前面不变,做一次fine-tuning

 

Regression的部分加在哪?

有两种处理方法:
  • 加在最后一个卷积层后面(如VGG)
  • 加在最后一个全连接层后面(如R-CNN)

 

regression太难做了,应想方设法转换为classification问题。
regression的训练参数收敛的时间要长得多,所以上面的网络采取了用classification的网络来计算出网络共同部分的连接权值。

 

思路二:取图像窗口
  • 还是刚才的classification + regression思路
  • 咱们取不同的大小的“框”
  • 让框出现在不同的位置,得出这个框的判定得分
  • 取得分最高的那个框


左上角的黑框:得分0.5
基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN
右上角的黑框:得分0.75

基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

左下角的黑框:得分0.6
基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN
右下角的黑框:得分0.8

基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

根据得分的高低,我们选择了右下角的黑框作为目标位置的预测。
注:有的时候也会选择得分最高的两个框,然后取两框的交集作为最终的位置预测。

疑惑:框要取多大?
取不同的框,依次从左上角扫到右下角。非常粗暴啊。

总结一下思路:
对一张图片,用各种大小的框(遍历整张图片)将图片截取出来,输入到CNN,然后CNN会输出这个框的得分(classification)以及这个框图片对应的x,y,h,w(regression)。

基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN


这方法实在太耗时间了,做个优化。
原来网络是这样的:

基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

优化成这样:把全连接层改为卷积层,这样可以提提速。

基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

 

物体检测(Object Detection)
当图像有很多物体怎么办的?难度可是一下暴增啊。

那任务就变成了:多物体识别+定位多个物体
那把这个任务看做分类问题?
基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

看成分类问题有何不妥?
  • 你需要找很多位置, 给很多个不同大小的框
  • 你还需要对框内的图像分类
  • 当然, 如果你的GPU很强大, 恩, 那加油做吧…

看做classification, 有没有办法优化下?我可不想试那么多框那么多位置啊!
有人想到一个好方法:
找出可能含有物体的框(也就是候选框,比如选1000个候选框),这些框之间是可以互相重叠互相包含的,这样我们就可以避免暴力枚举的所有框了。

基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

大牛们发明好多选定候选框的方法,比如EdgeBoxes和Selective Search。
以下是各种选定候选框的方法的性能对比。

基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

有一个很大的疑惑,提取候选框用到的算法“选择性搜索”到底怎么选出这些候选框的呢?那个就得好好看看它的论文了,这里就不介绍了。


R-CNN横空出世
基于以上的思路,RCNN的出现了。

基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

步骤一:训练(或者下载)一个分类模型(比如AlexNet)
基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN
步骤二:对该模型做fine-tuning
  • 将分类数从1000改为20
  • 去掉最后一个全连接层

基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN
步骤三:特征提取
  • 提取图像的所有候选框(选择性搜索)
  • 对于每一个区域:修正区域大小以适合CNN的输入,做一次前向运算,将第五个池化层的输出(就是对候选框提取到的特征)存到硬盘

基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

步骤四:训练一个SVM分类器(二分类)来判断这个候选框里物体的类别
每个类别对应一个SVM,判断是不是属于这个类别,是就是positive,反之nagative
比如下图,就是狗分类的SVM

基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN


步骤五:使用回归器精细修正候选框位置:对于每一个类,训练一个线性回归模型去判定这个框是否框得完美。

 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

 

RCNN的进化中SPP Net的思想对其贡献很大,这里也简单介绍一下SPP Net。

SPP Net
SPP:Spatial Pyramid Pooling(空间金字塔池化)
它的特点有两个:

1.结合空间金字塔方法实现CNNs的对尺度输入。
一般CNN后接全连接层或者分类器,他们都需要固定的输入尺寸,因此不得不对输入数据进行crop或者warp,这些预处理会造成数据的丢失或几何的失真。SPP Net的第一个贡献就是将金字塔思想加入到CNN,实现了数据的多尺度输入。

如下图所示,在卷积层和全连接层之间加入了SPP layer。此时网络的输入可以是任意尺度的,在SPP layer中每一个pooling的filter会根据输入调整大小,而SPP的输出尺度始终是固定的。

基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

 

2.只对原图提取一次卷积特征
在R-CNN中,每个候选框先resize到统一大小,然后分别作为CNN的输入,这样是很低效的。
所以SPP Net根据这个缺点做了优化:只对原图进行一次卷积得到整张图的feature map,然后找到每个候选框zaifeature map上的映射patch,将此patch作为每个候选框的卷积特征输入到SPP layer和之后的层。节省了大量的计算时间,比R-CNN有一百倍左右的提速。

基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN


Fast R-CNN
SPP Net真是个好方法,R-CNN的进阶版Fast R-CNN就是在RCNN的基础上采纳了SPP Net方法,对RCNN作了改进,使得性能进一步提高。

R-CNN与Fast RCNN的区别有哪些呢?
先说RCNN的缺点:即使使用了selective search等预处理步骤来提取潜在的bounding box作为输入,但是RCNN仍会有严重的速度瓶颈,原因也很明显,就是计算机对所有region进行特征提取时会有重复计算,Fast-RCNN正是为了解决这个问题诞生的。

基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

大牛提出了一个可以看做单层sppnet的网络层,叫做ROI Pooling,这个网络层可以把不同大小的输入映射到一个固定尺度的特征向量,而我们知道,conv、pooling、relu等操作都不需要固定size的输入,因此,在原始图片上执行这些操作后,虽然输入图片size不同导致得到的feature map尺寸也不同,不能直接接到一个全连接层进行分类,但是可以加入这个神奇的ROI Pooling层,对每个region都提取一个固定维度的特征表示,再通过正常的softmax进行类型识别。另外,之前RCNN的处理流程是先提proposal,然后CNN提取特征,之后用SVM分类器,最后再做bbox regression,而在Fast-RCNN中,作者巧妙的把bbox regression放进了神经网络内部,与region分类和并成为了一个multi-task模型,实际实验也证明,这两个任务能够共享卷积特征,并相互促进。Fast-RCNN很重要的一个贡献是成功的让人们看到了Region Proposal+CNN这一框架实时检测的希望,原来多类检测真的可以在保证准确率的同时提升处理速度,也为后来的Faster-RCNN做下了铺垫。

画一画重点:
R-CNN有一些相当大的缺点(把这些缺点都改掉了,就成了Fast R-CNN)。
大缺点:由于每一个候选框都要独自经过CNN,这使得花费的时间非常多。
解决:共享卷积层,现在不是每一个候选框都当做输入进入CNN了,而是输入一张完整的图片,在第五个卷积层再得到每个候选框的特征

原来的方法:许多候选框(比如两千个)-->CNN-->得到每个候选框的特征-->分类+回归
现在的方法:一张完整图片-->CNN-->得到每张候选框的特征-->分类+回归

所以容易看见,Fast RCNN相对于RCNN的提速原因就在于:不过不像RCNN把每个候选区域给深度网络提特征,而是整张图提一次特征,再把候选框映射到conv5上,而SPP只需要计算一次特征,剩下的只需要在conv5层上操作就可以了。

在性能上提升也是相当明显的:

基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

Faster R-CNN
Fast R-CNN存在的问题:存在瓶颈:选择性搜索,找出所有的候选框,这个也非常耗时。那我们能不能找出一个更加高效的方法来求出这些候选框呢?
解决:加入一个提取边缘的神经网络,也就说找到候选框的工作也交给神经网络来做了。
做这样的任务的神经网络叫做Region Proposal Network(RPN)。

具体做法:
  • 将RPN放在最后一个卷积层的后面
  • RPN直接训练得到候选区域

 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

RPN简介:
  • 在feature map上滑动窗口
  • 建一个神经网络用于物体分类+框位置的回归
  • 滑动窗口的位置提供了物体的大体位置信息
  • 框的回归提供了框更精确的位置

 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN


一种网络,四个损失函数;
  • RPN calssification(anchor good.bad)
  • RPN regression(anchor->propoasal)
  • Fast R-CNN classification(over classes)
  • Fast R-CNN regression(proposal ->box)

基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

速度对比

基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

Faster R-CNN的主要贡献是设计了提取候选区域的网络RPN,代替了费时的选择性搜索,使得检测速度大幅提高。


最后总结一下各大算法的步骤:
RCNN
  1. 在图像中确定约1000-2000个候选框 (使用选择性搜索)
  2. 每个候选框内图像块缩放至相同大小,并输入到CNN内进行特征提取 
  3. 对候选框中提取出的特征,使用分类器判别是否属于一个特定类 
  4. 对于属于某一特征的候选框,用回归器进一步调整其位置

Fast RCNN
  1. 在图像中确定约1000-2000个候选框 (使用选择性搜索)
  2. 对整张图片输进CNN,得到feature map
  3. 找到每个候选框在feature map上的映射patch,将此patch作为每个候选框的卷积特征输入到SPP layer和之后的层
  4. 对候选框中提取出的特征,使用分类器判别是否属于一个特定类 
  5. 对于属于某一特征的候选框,用回归器进一步调整其位置

Faster RCNN
  1. 对整张图片输进CNN,得到feature map
  2. 卷积特征输入到RPN,得到候选框的特征信息
  3. 对候选框中提取出的特征,使用分类器判别是否属于一个特定类 
  4. 对于属于某一特征的候选框,用回归器进一步调整其位置

 

 

总的来说,从R-CNN, SPP-NET, Fast R-CNN, Faster R-CNN一路走来,基于深度学习目标检测的流程变得越来越精简,精度越来越高,速度也越来越快。可以说基于region proposal的R-CNN系列目标检测方法是当前目标检测技术领域最主要的一个分支。

下面重点讲一下faster rcnn

转载自https://blog.****.net/shenxiaolu1984/article/details/51152614

 

本文是继RCNN[1],fast RCNN[2]之后,目标检测界的领军人物Ross Girshick团队在2015年的又一力作。简单网络目标检测速度达到17fps,在PASCAL VOC上准确率为59.9%;复杂网络达到5fps,准确率78.8%。

作者在github上给出了基于matlabpython的源码。对Region CNN算法不了解的同学,请先参看这两篇文章:《RCNN算法详解》《fast RCNN算法详解》

思想

从RCNN到fast RCNN,再到本文的faster RCNN,目标检测的四个基本步骤(候选区域生成,特征提取,分类,位置精修)终于被统一到一个深度网络框架之内。所有计算没有重复,完全在GPU中完成,大大提高了运行速度。 
基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

faster RCNN可以简单地看做“区域生成网络+fast RCNN“的系统,用区域生成网络代替fast RCNN中的Selective Search方法。本篇论文着重解决了这个系统中的三个问题: 
1. 如何设计区域生成网络 
2. 如何训练区域生成网络 
3. 如何让区域生成网络和fast RCNN网络共享特征提取网络

区域生成网络:结构

基本设想是:在提取好的特征图上,对所有可能的候选框进行判别。由于后续还有位置精修步骤,所以候选框实际比较稀疏。 
基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

特征提取

原始特征提取(上图灰色方框)包含若干层conv+relu,直接套用ImageNet上常见的分类网络即可。本文试验了两种网络:5层的ZF[3],16层的VGG-16[4],具体结构不再赘述。 
额外添加一个conv+relu层,输出51*39*256维特征(feature)。

候选区域(anchor)

特征可以看做一个尺度51*39的256通道图像,对于该图像的每一个位置,考虑9个可能的候选窗口:三种面积{1282,2562,5122}×三种比例{1:1,1:2,2:1}。这些候选窗口称为anchors。下图示出51*39个anchor中心,以及9种anchor示例。 
基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

在整个faster RCNN算法中,有三种尺度。 
原图尺度:原始输入的大小。不受任何限制,不影响性能。 
归一化尺度:输入特征提取网络的大小,在测试时设置,源码中opts.test_scale=600。anchor在这个尺度上设定。这个参数和anchor的相对大小决定了想要检测的目标范围。 
网络输入尺度:输入特征检测网络的大小,在训练时设置,源码中为224*224。

窗口分类和位置精修

分类层(cls_score)输出每一个位置上,9个anchor属于前景和背景的概率;窗口回归层(bbox_pred)输出每一个位置上,9个anchor对应窗口应该平移缩放的参数。 
对于每一个位置来说,分类层从256维特征中输出属于前景和背景的概率;窗口回归层从256维特征中输出4个平移缩放参数。

就局部来说,这两层是全连接网络;就全局来说,由于网络在所有位置(共51*39个)的参数相同,所以实际用尺寸为1×1的卷积网络实现。

实际代码中,将51*39*9个候选位置根据得分排序,选择最高的一部分,再经过Non-Maximum Suppression获得2000个候选结果。之后才送入分类器和回归器。 
所以Faster-RCNN和RCNN, Fast-RCNN一样,属于2-stage的检测算法。

区域生成网络:训练

样本(注意这里是针对anchor说的)

考察训练集中的每张图像: 
a. 对每个标定的真值候选区域,与其重叠比例最大的anchor记为前景样本 
b. 对a)剩余的anchor,如果其与某个标定重叠比例大于0.7,记为前景样本;如果其与任意一个标定的重叠比例都小于0.3,记为背景样本 
c. 对a),b)剩余的anchor,弃去不用。 
d. 跨越图像边界的anchor弃去不用

详细见https://blog.****.net/dulingtingzi/article/details/81171044

代价函数

同时最小化两种代价: 
a. 分类误差 
b. 前景样本的窗口位置偏差 
具体参看fast RCNN中的“分类与位置调整”段落

超参数

原始特征提取网络使用ImageNet的分类样本初始化,其余新增层随机初始化。 
每个mini-batch包含从一张图像中提取的256个anchor,前景背景样本1:1. 
前60K迭代,学习率0.001,后20K迭代,学习率0.0001。 
momentum设置为0.9,weight decay设置为0.0005。[5]

共享特征

区域生成网络(RPN)和fast RCNN都需要一个原始特征提取网络(下图灰色方框)。这个网络使用ImageNet的分类库得到初始参数W0,但要如何精调参数,使其同时满足两方的需求呢?本文讲解了三种方法。 
基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

轮流训练

a. 从W0开始,训练RPN。用RPN提取训练集上的候选区域 
b. 从W0开始,用候选区域训练Fast RCNN,参数记为W1 
c. 从W1开始,训练RPN… 
具体操作时,仅执行两次迭代,并在训练时冻结了部分层。论文中的实验使用此方法。 
如Ross Girshick在ICCV 15年的讲座Training R-CNNs of various velocities中所述,采用此方法没有什么根本原因,主要是因为”实现问题,以及截稿日期“。

近似联合训练

直接在上图结构上训练。在backward计算梯度时,把提取的ROI区域当做固定值看待;在backward更新参数时,来自RPN和来自Fast RCNN的增量合并输入原始特征提取层。 
此方法和前方法效果类似,但能将训练时间减少20%-25%。公布的python代码中包含此方法。

联合训练

直接在上图结构上训练。但在backward计算梯度时,要考虑ROI区域的变化的影响。推导超出本文范畴,请参看15年NIP论文[6]。

实验

除了开篇提到的基本性能外,还有一些值得注意的结论

  • 与Selective Search方法(黑)相比,当每张图生成的候选区域从2000减少到300时,本文RPN方法(红蓝)的召回率下降不大。说明RPN方法的目的性更明确。 
    基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

  • 使用更大的Microsoft COCO库[7]训练,直接在PASCAL VOC上测试,准确率提升6%。说明faster RCNN迁移性良好,没有over fitting。 
    基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN


  1. Girshick, Ross, et al. “Rich feature hierarchies for accurate object detection and semantic segmentation.” Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. 
  2. Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2015. 
  3. M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional neural networks,” in European Conference on Computer Vision (ECCV), 2014. 
  4. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in International Conference on Learning Representations (ICLR), 2015. 
  5. learning rate-控制增量和梯度之间的关系;momentum-保持前次迭代的增量;weight decay-每次迭代缩小参数,相当于正则化。 
  6. Jaderberg et al. “Spatial Transformer Networks” 
    NIPS 2015 
  7. 30万+图像,80类检测库。参看http://mscoco.org/。 

关于fasterrcnn里面的rpn的anchor部分的理解可以参考:https://blog.****.net/ture_dream/article/details/76824889以及https://www.zhihu.com/question/42205480/answer/155759667这部分还是很重要的