Spark Streaming实战之黑名单过滤
1.需求场景
访问日志:
201801,zs
201802,ls
201803,ww
.....
黑名单:
zs,ls...
现在需要把黑名单中的人从访问日志中给过滤掉,然后得到一份新的访问日志
2.思路分析
要实现上边的需求,首先要进行思路分析,即如何实现
我们可以把黑名单数据先变成一个RDD,将它变成(zs,true) (ls,true)这样的形式,然后再将访问日志变成(zs,<201801,zs>) (ls,<201802,ls>) (ww,<201803,ww>)的形式,使用leftjoin把它们变成(zs,[<201801,zs>,true]) (ls,[<201802,ls>,true]) (ww,[<201803,ww>,true])的形式,如果是true的话就输出
3.代码实现
package cn.ysjh
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}
object TranFormSpark {
def main(args: Array[String]): Unit = {
val cf: SparkConf = new SparkConf().setAppName("TranForm").setMaster("local[2]")
val stream: StreamingContext = new StreamingContext(cf,Seconds(5))
/*
构建黑名单
*/
val block = List("zs","ls")
val blocks: RDD[(String, Boolean)] = stream.sparkContext.parallelize(block).map(x => (x,true))
val socket: ReceiverInputDStream[String] = stream.socketTextStream("192.168.220.134",6789)
val result: DStream[String] = socket.map(x => (x.split(",")(1), x)).transform(rdd => {
rdd.leftOuterJoin(blocks)
.filter(x => x._2._2.getOrElse(false) != true)
.map(x => x._2._1)
})
result.print()
stream.start()
stream.awaitTermination()
}
}
4.运行测试
在虚拟机中使用nc来输送socket数据,,然后看在IDEA中Spark Streaming程序的运行结果