【马普所2008】机器学习中的核方法(上)

Hofmann T , Sch?Lkopf B , Smola A J . Kernel methods in machine learning[J]. Annals of Stats, 2008, 36(3).
[1] Integrating structured biological data by kernel
maximum mean discrepancy

本文是对于文献‘Kernel Methods in Machine Learning’的整理和总结。
该文章出版时间为2008年,比较久远,可以作为机器学习基础知识看待。

引入核方法的目的

  1. 概括
    传统的机器学习理论和算法都是基于线性空间的,而实际问题中的数据分析问题通常需要使用非线性方法解决。而引入正定核可以在理论和实际问题中都达到最好的效果。

  2. 基本原理
    正定核对应着特征空间的点乘。只要能够用核方法将everythhing都转化到特征空间,就可以在特征空间里用线性方法进行判别,而不需要对高维特征空间进行特殊计算。

核(尤其是正定核)的性质

介绍性的例子

  1. 定义问题
    假设是二分类问题,有一组训练集有n个样本:(x1,y1),(x2,y2),…,(xn,yn),y取值为{-1,1}。对于一个新的输入样本x,希望能预测对应的y,让(x,y)与训练样本相似。因此需要对xi所在的空间 X ,和yi所在的{-1,1}中元素的相似度进行衡量。后者显而易见,但前者需要定义函数:
    【马普所2008】机器学习中的核方法(上)并且该函数满足:
    【马普所2008】机器学习中的核方法(上)其中【马普所2008】机器学习中的核方法(上)将xi映射到点乘空间 H 中,也称为特征空间。
    也就是说,在 X 空间上的k(xi,xj)等价于在特征空间的点乘。

  2. 结合图例
    【马普所2008】机器学习中的核方法(上)
    对于上图的二分类问题,我们采用这样的分类方法,即,当新样本输入x对应的特征空间中的【马普所2008】机器学习中的核方法(上)更靠近训练样本中正类的均值【马普所2008】机器学习中的核方法(上)时,认为其对应输出y=+1,反之亦然。
    因此用指示函数sgn(.)表示分类器为:
    【马普所2008】机器学习中的核方法(上)* 与SVM关系
    分类器(5)与SVM有很强的联系。在特征空间,该分类器为显示为线性,但是在输入空间X中用核的扩展表示(represented by a kernel expansion)。相当于用特征空间里的超平面进行分类。SVM与(5)所示分类器的区别在于w=c+cw=c_+ - c_-的法向量上.

  • 该法向量的方向决定了超平面的方向,长度决定了两个类别的生成分布。(?[1])

  • 分析
    c+、c-即为特征空间内两类样本点的均值,那么他们之间的连线的垂线(点虚线)就把整个特征空间分为两个部分,连线上到两个均值点距离相等,左边的点离c+更近,反之亦然。
    对应公式中的b,即为正负两类数据的均值在特征空间的点之间的差距的1/2,可以看做是向量 c-c+ 的一半,作用是将c±的中点移到原点,即将虚线、c±连线平移、旋转到与坐标轴重合的位置,方便使用指示函数。

  1. 考虑特殊情况
    当b=0时,即当c-与c+连线中点与原点重合,用下式估计两个概率分布:
    【马普所2008】机器学习中的核方法(上)那么分类器(5)就变成了贝叶斯决策法则(判断p+大则认为y=1,p-大则y=-1).

正定核

用核方法进行相关性估计和数据分析

再生核Hilbert空间在定义统计模型的应用

专业词汇

positive definite kernel 正定核
dot product space 点积空间