【中英】【吴恩达课后测验】Course 5 - 序列模型 - 第三周测验 - 序列模型与注意力机制

【中英】【吴恩达课后测验】Course 5 - 序列模型 - 第三周测验 - 序列模型与注意力机制


上一篇:【课程5 - 第二周编程作业】※※※※※ 【回到目录】※※※※※下一篇:【待撰写-课程5 - 第三周编程作业】

  1. 想一想使用如下的编码-解码模型来进行机器翻译:
    【中英】【吴恩达课后测验】Course 5 - 序列模型 - 第三周测验 - 序列模型与注意力机制
    这个模型是“条件语言模型”,编码器部分(绿色显示)的意义是建模中输入句子x的概率

    • 正确
    • 错误
  2. 在集束搜索中,如果增加集束宽度bb,以下哪一项是正确的?

    • 集束搜索将运行的更慢。
    • 集束搜索将使用更多的内存。
    • 集束搜索通常将找到更好地解决方案(比如:在最大化概率P(yxP(y|x)上做的更好)。
    • 集束搜索将在更少的步骤后收敛。
  3. 在机器翻译中,如果我们在不使用句子归一化的情况下使用集束搜索,那么算法会输出过短的译文。

    • 正确
    • 错误
  4. 假设你正在构建一个能够让语音片段xx转为译文yy的基于RNN模型的语音识别系统,你的程序使用了集束搜索来试着找寻最大的P(yx)P(y|x)的值yy。在开发集样本中,给定一个输入音频,你的程序会输出译文y^=\hat{y} = “I’m building an A Eye system in Silly con Valley.”,人工翻译为y=y^* = “I’m building an AI system in Silicon Valley.”

    在你的模型中,

    P(y^x)=1.09107P(\hat{y} \mid x) = 1.09*10^{-7}

    P(yx)=7.21108P(y^* \mid x) = 7.21*10^{-8}

    那么,你会增加集束宽度BB来帮助修正这个样本吗?

    • 不会,因为 P(yx)P(y^x)P(y^* \mid x) \leq P(\hat{y} \mid x) 说明了这个锅要丢给RNN,不能让搜索算法背锅。

    • 不会,因为 P(yx)P(y^x)P(y^* \mid x) \leq P(\hat{y} \mid x) 说明了这个锅要丢给搜索算法,凭什么让RNN背锅?

    • 会的,因为 P(yx)P(y^x)P(y^* \mid x) \leq P(\hat{y} \mid x) 说明了都是RNN的错,咱不能冤枉搜索算法。

    • 会的,因为 P(yx)P(y^x)P(y^* \mid x) \leq P(\hat{y} \mid x) 说明了千错万错都是搜索算法的错,可不能惩罚RNN啊~

    博主注:皮这一下好开心~(~ ̄▽ ̄)~

  5. 接着使用第4题那里的样本,假设你花了几周的时间来研究你的算法,现在你发现,对于绝大多数让算法出错的例子而言,P(yx)P(y^x)P(y^* \mid x) \leq P(\hat{y} \mid x),这表明你应该将注意力集中在改进搜索算法上,对吗?

    • 嗯嗯~
    • 不对
  6. 回想一下机器翻译的模型:
    【中英】【吴恩达课后测验】Course 5 - 序列模型 - 第三周测验 - 序列模型与注意力机制
    除此之外,还有个公式 a<t,t>=exp(e<t,t>)t=1Txexp(e<t,t>)a^{<t,t'>} = \frac{\text{exp}(e^{<t,t'>})}{\sum^{T_x}_{t'=1}\text{exp}(e^{<t,t'>})}

    下面关于 α<t,t>\alpha^{<t,t’>} 的选项那个(些)是正确的?

    • 对于网络中与输出y<t>y^{<t>}高度相关的 α<t>\alpha^{<t'>} 而言,我们通常希望 α<t,t>\alpha^{<t,t'>}的值更大。(请注意上标)
    • 对于网络中与输出y<t>y^{<t>}高度相关的 α<t>\alpha^{<t>} 而言,我们通常希望 α<t,t>\alpha^{<t,t'>}的值更大。(请注意上标)
    • tα<t,t>=1\sum_{t} \alpha^{<t,t'>} = 1 (注意是和除以t.)
    • tα<t,t>=1\sum_{t'} \alpha^{<t,t'>}=1 (注意是和除以t′.)
  7. 网络通过学习的值e<t,t>e^{<t,t'>}来学习在哪里关注“关注点”,这个值是用一个小的神经网络的计算出来的:

    这个神经网络的输入中,我们不能将 s<t>s^{<t>}替换为s<t1>s^{<t-1>}。这是因为s<t>s^{<t>}依赖于α<t,t>\alpha^{<t,t'>},而α<t,t>\alpha^{<t,t'>}又依赖于e<t,t>e^{<t,t'>};所以在我们需要评估这个网络时,我们还没有计算出sts^{t}

    • 正确
    • 错误
  8. 与题1中的编码-解码模型(没有使用注意力机制)相比,我们希望有注意力机制的模型在下面的情况下有着最大的优势:

    • 输入序列的长度TxT_x比较大。
    • 输入序列的长度TxT_x比较小。

9.在CTC模型下,不使用"空白"字符(_)分割的相同字符串将会被折叠。那么在CTC模型下,以下字符串将会被折叠成什么样子?__c_oo_o_kk___b_ooooo__oo__kkk

  • cokbok
    • cookbook
    • cook book
    • coookkboooooookkk
  1. 在触发词检测中, x<t>x^{<t>} 是:
    • 时间tt时的音频特征(就像是频谱特征一样)。
    • tt个输入字,其被表示为一个独热向量或者一个字嵌入。
    • 是否在第tt时刻说出了触发词。
    • 是否有人在第tt时刻说完了触发词。

Sequence models & Attention mechanism

  1. Consider using this encoder-decoder model for machine translation.

【中英】【吴恩达课后测验】Course 5 - 序列模型 - 第三周测验 - 序列模型与注意力机制

This model is a “conditional language model” in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence xx.
- [x] True
- [ ] False

  1. In beam search, if you increase the beam width BB, which of the following would you expect to be true? Check all that apply.
    • Beam search will run more slowly.
    • Beam search will use up more memory.
    • Beam search will generally find better solutions (i.e. do a better job maximizing P(y \mid x)P(y∣x))
    • Beam search will converge after fewer steps.

  1. In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly short translations.
    • True
    • False

  1. Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip xx to a text transcript yy. Your algorithm uses beam search to try to find the value of yy that maximizes P(yx)P(y \mid x).
    On a dev set example, given an input audio clip, your algorithm outputs the transcript y^=\hat{y} = “I’m building an A Eye system in Silly con Valley.”, whereas a human gives a much superior transcript y=y^* = “I’m building an AI system in Silicon Valley.”.
    According to your model,
    P(y^x)=1.09107P(\hat{y} \mid x) = 1.09*10^{-7}
    P(yx)=7.21108P(y^∗ \mid x) = 7.21∗10^{−8}
    Would you expect increasing the beam width B to help correct this example?

    • No, because P(yx)P(y^x)P(y^∗ \mid x) \leq P(\hat{y} \mid x) indicates the error should be attributed to the RNN rather than to the search algorithm.
    • No, because P(yx)P(y^x)P(y^∗ \mid x) \leq P(\hat{y} \mid x) indicates the error should be attributed to the search algorithm rather than to the RNN.
    • Yes, because P(yx)P(y^x)P(y^∗ \mid x) \leq P(\hat{y} \mid x) indicates the error should be attributed to the RNN rather than to the search algorithm.
    • Yes, because P(yx)P(y^x)P(y^∗ \mid x) \leq P(\hat{y} \mid x) indicates the error should be attributed to the search algorithm rather than to the RNN.

  1. Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake, P(yx)>P(y^x)P(y^∗ \mid x) > P(\hat{y} \mid x). This suggest you should focus your attention on improving the search algorithm.
    • True
    • False

  1. Consider the attention model for machine translation.
【中英】【吴恩达课后测验】Course 5 - 序列模型 - 第三周测验 - 序列模型与注意力机制

Further, here is the formula for α<t,t>\alpha^{<t,t′>}.

a<t,t>=exp(e<t,t>)t=1Txexp(e<t,t>)a^{<t,t'>} = \frac{\text{exp}(e^{<t,t'>})}{\sum^{T_x}_{t'=1}\text{exp}(e^{<t,t'>})}

Which of the following statements about α<t,t>\alpha^{<t,t′>} are true? Check all that apply.

  • We expect α<t,t>\alpha^{<t,t'>} to be generally larger for values of a<t>a^{<t'>} that are highly relevant to the value the network should output for y<t>y^{<t>}. (Note the indices in the superscripts.)
  • We expect α<t,t>\alpha^{<t,t'>} to be generally larger for values of a<t>a^{<t>} that are highly relevant to the value the network should output for y<t>y^{<t'>}. (Note the indices in the superscripts.)
  • tα<t,t>=1\sum_{t} \alpha^{<t,t'>}=1 (Note the summation is over tt.)
  • tα<t,t>=1\sum_{t'} \alpha^{<t,t'>}=1 (Note the summation is over tt'.)
  1. The network learns where to “pay attention” by learning the values e<t,t′>, which are computed using a small neural network:
    We can’t replace s&lt;t1&gt;s^{&lt;t-1&gt;} with s&lt;t&gt;s^{&lt;t&gt;} as an input to this neural network. This is because s&lt;t&gt;s^{&lt;t&gt;} depends on α&lt;t,t&gt;\alpha^{&lt;t,t′&gt;} which in turn depends on e&lt;t,t&gt;e^{&lt;t,t′&gt;}; so at the time we need to evalute this network, we haven’t computed s&lt;t&gt;s^{&lt;t&gt;} yet.

    • True
    • False

  1. Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:
    • The input sequence length TxT_x is large.
    • The input sequence length TxT_x is small.

  1. Under the CTC model, identical repeated characters not separated by the “blank” character (_) are collapsed. Under the CTC model, what does the following string collapse to? __c_oo_o_kk___b_ooooo__oo__kkk
    • cokbok
    • cookbook
    • cook book
    • coookkboooooookkk

  1. In trigger word detection, x&lt;t&gt;x^{&lt;t&gt;} is:
    • Features of the audio (such as spectrogram features) at time tt.
    • The tt-th input word, represented as either a one-hot vector or a word embedding.
    • Whether the trigger word is being said at time tt.
    • Whether someone has just finished saying the trigger word at time tt.