引入了一个IO多路复用模型
我们前面讲的非阻塞仍然需要进程不断的轮询重试。能不能实现当数据可读了以后给程序一个通知呢?所以这里引入了一个IO多路复用模型,I/O多路复用的本质是通过一种机制(系统内核缓冲I/O数据),让单个进程可以监视多个文件描述符,一旦某个描述符就绪(一般是读就绪或写就绪),能够通知程序进行相应的读写操作
【什么是fd:在linux中,内核把所有的外部设备都当成是一个文件来操作,对一个文件的读写会调用内核提供的系统命令,返回一个fd(文件描述符)。而对于一个socket的读写也会有相应的文件描述符,成为socketfd】
常见的IO多路复用方式有【select、poll、epoll】,都是Linux API提供的IO复用方式,那么接下来重点讲一下select、和epoll这两个模型
select:进程可以通过把一个或者多个fd传递给select系统调用,进程会阻塞在select操作上,这样select可以帮我们检测多个fd是否处于就绪状态。
这个模式有二个缺点
1. 由于他能够同时监听多个文件描述符,假如说有1000个,这个时候如果其中一个fd 处于就绪状态了,那么当前进程需要线性轮询所有的fd,也就是监听的fd越多,性能开销越大。
2. 同时,select在单个进程中能打开的fd是有限制的,默认是1024,对于那些需要支持单机上万的TCP连接来说确实有点少
epoll:linux还提供了epoll的系统调用,epoll是基于事件驱动方式来代替顺序扫描,因此性能相对来说更高,主要原理是,当被监听的fd中,有fd就绪时,会告知当前进程具体哪一个fd就绪,那么当前进程只需要去从指定的fd上读取数据即可
另外,epoll所能支持的fd上线是操作系统的最大文件句柄,这个数字要远远大于1024
【由于epoll能够通过事件告知应用进程哪个fd是可读的,所以我们也称这种IO为异步非阻塞IO,当然它是伪异步的,因为它还需要去把数据从内核同步复制到用户空间中,真正的异步非阻塞,应该是数据已经完全准备好了,我只需要从用户空间读就行】