【源码】属性约简的局部搜索算法
提出了两种基于迭代局部搜索和粗糙集的属性约简算法。
Two new attribute reduction algorithms based on iterated local search and rough sets are proposed.
这两种算法都是从相对约简的贪婪构造开始的。
Both algorithms start with a greedy construction of a relative reduct.
然后尝试删除一些属性以使约简更小化。
Then attempts to remove some attributes to make the reduct smaller.
属性选择过程是算法之间的主要区别。
Process of selection of attributes is the main difference between the algorithms.
第一种算法是随机的,第二种算法采用了复杂的选择过程。
It is random for the first one, and a sophisticated selection procedure is used in the second algorithm.
此外,假定第一种算法的迭代次数是固定的,而当达到局部最优时,第二种算法将停止运算。
Moreover a fixed number of iterations is assumed for the first algorithms whereas the second stop when a local optimum is reached.
使用来自UCI的八种著名数据集进行了各种实验,展示了以上算法的巨大优势。
Various experiments using eight well-known data sets from UCI have been made and they show substantial superiority of our algorithms.
完整源码下载请点击“阅读原文”