零中频采样及信号重构

1 零中频采样

零中频采样过程如图所示:

零中频采样及信号重构
假设信号为:

s=Asin(ω1t)+Bsin(ω2t)s=A\mathrm{sin}(\omega_1t)+B\mathrm{sin}(\omega_2t)

为了计算简便,所有的频率中省略2π2\pi以及相位。

对这个信号进行零中频正交采样,得到:

I=ssin(ω1+ω22t)=A2[cosω1ω22tcos3ω1+ω22t]+B2[cosω1ω22tcosω1+3ω22t]\begin{aligned} I &=s \cdot \sin \left(\frac{\omega_{1}+\omega_{2}}{2} t\right) \\ &=\frac{A}{2}\left[\cos \frac{\omega_{1}-\omega_{2}}{2} t-\cos \frac{3 \omega_{1}+\omega_{2}}{2} t\right]+\frac{B}{2}\left[\cos \frac{\omega_{1}-\omega_{2}}{2} t-\cos \frac{\omega_{1}+3 \omega_{2}}{2} t\right] \end{aligned}

Q=scos(ω1+ω22t)=A2[sin3ω1+ω22t+sinω1ω22t]+B2[sinω1+3ω22tsinω1ω22t]\begin{aligned} Q &=s \cdot \cos \left(\frac{\omega_{1}+\omega_{2}}{2} t\right) \\ &=\frac{A}{2}\left[\sin \frac{3 \omega_{1}+\omega_{2}}{2} t+\sin \frac{\omega_{1}-\omega_{2}}{2} t\right]+\frac{B}{2}\left[\sin \frac{\omega_{1}+3 \omega_{2}}{2} t-\sin \frac{\omega_{1}-\omega_{2}}{2} t\right] \end{aligned}

过低通滤波器之后,变为:

I=A2cosω1ω22t+B2cosω1ω22t=A+B2cosω1ω22t\begin{aligned} I &=\frac{A}{2} \cos \frac{\omega_{1}-\omega_{2}}{2} t+\frac{B}{2} \cos \frac{\omega_{1}-\omega_{2}}{2} t \\ &=\frac{A+B}{2} \cos \frac{\omega_{1}-\omega_{2}}{2} t \end{aligned}

Q=A2sinω1ω22tB2sinω1ω22t=AB2sinω1ω22t\begin{aligned} Q &=\frac{A}{2} \sin \frac{\omega_{1}-\omega_{2}}{2} t-\frac{B}{2} \sin \frac{\omega_{1}-\omega_{2}}{2} t \\ &=\frac{A-B}{2} \sin \frac{\omega_{1}-\omega_{2}}{2} t \end{aligned}

这样就将信号降至零中频,也就是基带。这时,信号带宽为射频带宽的一半,即B2\frac{B}{2}。因此,可以用fs=Bf_s=B来对信号进行采样,继而进行后续处理。

2 信号重构

零中频采样之后信号的重构过程如图所示:

零中频采样及信号重构
以上面的零中频采样之后的信号为例。分别乘以同相和正交的频率之后,得到:

Ir=Isin(ω1+ω22t)=A+B2cos(ω1ω22t)sin(ω1+ω22t)=A+B4[sin(ω1ω2+ω1+ω22t)sin(ω1ω2ω1ω22t)]=A+B4(sinω1t+sinω2t)\begin{aligned} I_r &=I\cdot\sin \left(\frac{\omega_{1}+\omega_{2}}{2} t\right) \\&=\frac{A+B}{2} \cos \left(\frac{\omega_{1}-\omega_{2}}{2} t\right) \sin \left(\frac{\omega_{1}+\omega_{2}}{2} t\right) \\ &=\frac{A+B}{4}\left[\sin \left(\frac{\omega_{1}-\omega_{2}+\omega_{1}+\omega_{2}}{2} t\right)-\sin \left(\frac{\omega_{1}-\omega_{2}-\omega_{1}-\omega_{2}}{2} t\right)\right] \\ &=\frac{A+B}{4}\left(\sin \omega_{1} t+\sin \omega_{2} t\right) \end{aligned}

Qr=Qcos(ω1+ω22t)=AB2sin(ω1ω22t)cos(ω1+ω22t)=AB4[sin(ω1ω2+ω1+ω22t)+sin(ω1ω2ω1ω22t)]=AB4(sinω1tsinω2t)\begin{aligned} Q_r &=Q \cdot \cos \left(\frac{\omega_{1}+\omega_{2}}{2} t\right) \\&=\frac{A-B}{2} \sin \left(\frac{\omega_{1}-\omega_{2}}{2} t\right) \cos \left(\frac{\omega_{1}+\omega_{2}}{2} t\right) \\ &=\frac{A-B}{4}\left[\sin \left(\frac{\omega_{1}-\omega_{2}+\omega_{1}+\omega_{2}}{2} t\right)+\sin \left(\frac{\omega_{1}-\omega_{2}-\omega_{1}-\omega_{2}}{2} t\right)\right] \\ &=\frac{A-B}{4}\left(\sin \omega_{1} t-\sin \omega_{2} t\right) \end{aligned}

最后两路信号相加:

s=Ir+Qr=A+B4(sinω1t+sinω2t)+AB4(sinω1tsinω2t)=A2sinω1t+B2sinω2t\begin{aligned} s = I_{r}+Q_{r} &=\frac{A+B}{4}\left(\sin \omega_{1} t+\sin \omega_{2} t\right)+\frac{A-B}{4}\left(\sin \omega_{1} t-\sin \omega_{2} t\right) \\ &=\frac{A}{2} \sin \omega_{1} t+\frac{B}{2} \sin \omega_{2} t \end{aligned}

完全恢复了原始信号。