Java多线程CAS
线程的启动方式
启动线程的方式只有两种:
1、X extends Thread;,然后X.start()
2、X implements Runnable;然后交给Thread运行
第三种,实现一个Callable,然后交给一个FutureTask对象,再把这个FutureTask对象作为参数来启动Thread其实就是上面的第二种启动方式。
线程的状态
Java中线程的状态分为6种:
- 初始(NEW):新创建了一个线程对象,但还没有调用start()方法。
- 运行(RUNNABLE):Java线程中将就绪(ready)和运行中(running)两种状态笼统的称为“运行”。
线程对象创建后,其他线程(比如main线程)调用了该对象的start()方法。该状态的线程位于可运行线程池中,等待被线程调度选中,获取CPU的使用权,此时处于就绪状态(ready)。就绪状态的线程在获得CPU时间片后变为运行中状态(running)。 - 阻塞(BLOCKED):表示线程阻塞于锁。
- 等待(WAITING):进入该状态的线程需要等待其他线程做出一些特定动作(通知或中断)。
- 超时等待(TIMED_WAITING):该状态不同于WAITING,它可以在指定的时间后自行返回。
- 终止(TERMINATED):表示该线程已经执行完毕。
状态之间的变迁如下图所示:
死锁
概念
是指两个或两个以上的进程在执行过程中,由于竞争资源或者由于彼此通信而造成的一种阻塞的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁。
举个例子:A和B去按摩洗脚,都想在洗脚的时候,同时顺便做个头部按摩,13技师擅长足底按摩,14擅长头部按摩。
这个时候A先抢到14,B先抢到13,两个人都想同时洗脚和头部按摩,于是就互不相让,扬言我死也不让你,这样的话,A抢到14,想要13,B抢到13,想要14,在这个想同时洗脚和头部按摩的事情上A和B就产生了死锁。怎么解决这个问题呢?
第一种,假如这个时候,来了个15,刚好也是擅长头部按摩的,A又没有两个脑袋,自然就归了B,于是B就美滋滋的洗脚和做头部按摩,剩下A在旁边气鼓鼓的,这个时候死锁这种情况就被打破了,不存在了。
第二种,C出场了,用武力强迫A和B,必须先做洗脚,再头部按摩,这种情况下,A和B谁先抢到13,谁就可以进行下去,另外一个没抢到的,就等着,这种情况下,也不会产生死锁。
所以总结一下:
死锁是必然发生在多操作者(M>=2个)情况下,争夺多个资源(N>=2个,且N<=M)才会发生这种情况。很明显,单线程自然不会有死锁,只有B一个去,不要2个,打十个都没问题;单资源呢?只有13,A和B也只会产生激烈竞争,打得不可开交,谁抢到就是谁的,但不会产生死锁。同时,死锁还有几个要求:1、争夺资源的顺序不对,如果争夺资源的顺序是一样的,也不会产生死锁;
2、争夺者拿到资源不放手。
死锁的学术化定义
死锁的发生必须具备以下四个必要条件。
1)互斥条件:指进程对所分配到的资源进行排它性使用,即在一段时间内某资源只由一个进程占用。如果此时还有其它进程请求资源,则请求者只能等待,直至占有资源的进程用毕释放。
2)请求和保持条件:指进程已经保持至少一个资源,但又提出了新的资源请求,而该资源已被其它进程占有,此时请求进程阻塞,但又对自己已获得的其它资源保持不放。
3)不剥夺条件:指进程已获得的资源,在未使用完之前,不能被剥夺,只能在使用完时由自己释放。
4)环路等待条件:指在发生死锁时,必然存在一个进程——资源的环形链,即进程集合{P0,P1,P2,···,Pn}中的P0正在等待一个P1占用的资源;P1正在等待P2占用的资源,……,Pn正在等待已被P0占用的资源。
理解了死锁的原因,尤其是产生死锁的四个必要条件,就可以最大可能地避免、预防和解除死锁。
只要打破四个必要条件之一就能有效预防死锁的发生。
打破互斥条件:改造独占性资源为虚拟资源,大部分资源已无法改造。
打破不可抢占条件:当一进程占有一独占性资源后又申请一独占性资源而无法满足,则退出原占有的资源。
打破占有且申请条件:采用资源预先分配策略,即进程运行前申请全部资源,满足则运行,不然就等待,这样就不会占有且申请。
打破循环等待条件:实现资源有序分配策略,对所有设备实现分类编号,所有进程只能采用按序号递增的形式申请资源。
避免死锁常见的算法有有序资源分配法、银行家算法。
危害
1、线程不工作了,但是整个程序还是活着的2、没有任何的异常信息可以供我们检查。3、一旦程序发生了发生了死锁,是没有任何的办法恢复的,只能重启程序,对正式已发布程序来说,这是个很严重的问题。
如何解决死锁
关键是保证拿锁的顺序一致。
两种解决方式:
1、内部通过顺序比较,确定拿锁的顺序;
2、采用尝试拿锁的机制。
其他线程安全问题
活锁
两个线程在尝试拿锁的机制中,发生多个线程之间互相谦让,不断发生同一个线程总是拿到同一把锁,在尝试拿另一把锁时因为拿不到,而将本来已经持有的锁释放的过程。
解决办法:每个线程休眠随机数,错开拿锁的时间。
线程饥饿
低优先级的线程,总是拿不到执行时间
CAS基本原理
什么是原子操作?如何实现原子操作?
假定有两个操作A和B(A和B可能都很复杂),如果从执行A的线程来看,当另一个线程执行B时,要么将B全部执行完,要么完全不执行B,那么A和B对彼此来说是原子的。
实现原子操作可以使用锁,锁机制,满足基本的需求是没有问题的了,但是有的时候我们的需求并非这么简单,我们需要更有效,更加灵活的机制,synchronized关键字是基于阻塞的锁机制,也就是说当一个线程拥有锁的时候,访问同一资源的其它线程需要等待,直到该线程释放锁,
这里会有些问题:首先,如果被阻塞的线程优先级很高很重要怎么办?其次,如果获得锁的线程一直不释放锁怎么办?(这种情况是非常糟糕的)。还有一种情况,如果有大量的线程来竞争资源,那CPU将会花费大量的时间和资源来处理这些竞争,同时,还有可能出现一些例如死锁之类的情况,最后,其实锁机制是一种比较粗糙,粒度比较大的机制,相对于像计数器这样的需求有点儿过于笨重。
实现原子操作还可以使用当前的处理器基本都支持CAS()的指令,只不过每个厂家所实现的算法并不一样,每一个CAS操作过程都包含三个运算符:一个内存地址V,一个期望的值A和一个新值B,操作的时候如果这个地址上存放的值等于这个期望的值A,则将地址上的值赋为新值B,否则不做任何操作。
CAS的基本思路就是,如果这个地址上的值和期望的值相等,则给其赋予新值,否则不做任何事儿,但是要返回原值是多少。循环CAS就是在一个循环里不断的做cas操作,直到成功为止。
CAS实现原子操作的三大问题
ABA问题。
因为CAS需要在操作值的时候,检查值有没有发生变化,如果没有发生变化则更新,但是如果一个值原来是A,变成了B,又变成了A,那么使用CAS进行检查时会发现它的值没有发生变化,但是实际上却变化了。
ABA问题的解决思路就是使用版本号。在变量前面追加上版本号,每次变量更新的时候把版本号加1,那么A→B→A就会变成1A→2B→3A。举个通俗点的例子,你倒了一杯水放桌子上,干了点别的事,然后同事把你水喝了又给你重新倒了一杯水,你回来看水还在,拿起来就喝,如果你不管水中间被人喝过,只关心水还在,这就是ABA问题。
如果你是一个讲卫生讲文明的小伙子,不但关心水在不在,还要在你离开的时候水被人动过没有,因为你是程序员,所以就想起了放了张纸在旁边,写上初始值0,别人喝水前麻烦先做个累加才能喝水。
循环时间长开销大。
自旋CAS如果长时间不成功,会给CPU带来非常大的执行开销。
只能保证一个共享变量的原子操作。
当对一个共享变量执行操作时,我们可以使用循环CAS的方式来保证原子操作,但是对多个共享变量操作时,循环CAS就无法保证操作的原子性,这个时候就可以用锁。
还有一个取巧的办法,就是把多个共享变量合并成一个共享变量来操作。比如,有两个共享变量i=2,j=a,合并一下ij=2a,然后用CAS来操作ij。从Java 1.5开始,JDK提供了AtomicReference类来保证引用对象之间的原子性,就可以把多个变量放在一个对象里来进行CAS操作。
Jdk中相关原子操作类的使用
AtomicInteger
•int addAndGet(int delta):以原子方式将输入的数值与实例中的值(AtomicInteger里的value)相加,并返回结果。
•boolean compareAndSet(int expect,int update):如果输入的数值等于预期值,则以原子方式将该值设置为输入的值。
•int getAndIncrement():以原子方式将当前值加1,注意,这里返回的是自增前的值。
•int getAndSet(int newValue):以原子方式设置为newValue的值,并返回旧值。
AtomicIntegerArray
主要是提供原子的方式更新数组里的整型,其常用方法如下。
•int addAndGet(int i,int delta):以原子方式将输入值与数组中索引i的元素相加。
•boolean compareAndSet(int i,int expect,int update):如果当前值等于预期值,则以原子方式将数组位置i的元素设置成update值。
需要注意的是,数组value通过构造方法传递进去,然后AtomicIntegerArray会将当前数组复制一份,所以当AtomicIntegerArray对内部的数组元素进行修改时,不会影响传入的数组。
更新引用类型
原子更新基本类型的AtomicInteger,只能更新一个变量,如果要原子更新多个变量,就需要使用这个原子更新引用类型提供的类。Atomic包提供了以下3个类。
AtomicReference
原子更新引用类型。
AtomicStampedReference
利用版本戳的形式记录了每次改变以后的版本号,这样的话就不会存在ABA问题了。这就是AtomicStampedReference的解决方案。AtomicMarkableReference跟AtomicStampedReference差不多, AtomicStampedReference是使用pair的int stamp作为计数器使用,AtomicMarkableReference的pair使用的是boolean mark。 还是那个水的例子,AtomicStampedReference可能关心的是动过几次,AtomicMarkableReference关心的是有没有被人动过,方法都比较简单。
AtomicMarkableReference:
原子更新带有标记位的引用类型。可以原子更新一个布尔类型的标记位和引用类型。构造方法是AtomicMarkableReference(V initialRef,boolean initialMark)。