数据结构与算法之美笔记: 排序 「 四 」

排序算法:

数据结构与算法之美笔记: 排序 「 四 」

 

数据结构与算法之美笔记: 排序 「 四 」

  1. 稳定排序:如果 a 原本在 b 的前面,且 a == b,排序之后 a 仍然在 b 的前面,则为稳定排序。
  2. 非稳定排序:如果 a 原本在 b 的前面,且 a == b,排序之后 a 可能不在 b 的前面,则为非稳定排序。
  3. 原地排序:原地排序就是指在排序过程中不申请多余的存储空间,只利用原来存储待排数据的存储空间进行比较和交换的数据排序。
  4. 非原地排序:需要利用额外的数组来辅助排序。
  5. 时间复杂度:一个算法执行所消耗的时间。
  6. 空间复杂度:运行完一个算法所需的内存大小。

 

 

如果对小规模数据进行排序,可以选择时间复杂度是 O(n2) 的算法;

如果对大规模数据进行排序,时间复杂度是 O(nlogn) 的算法更加高效。

所以,为了兼顾任意规模数据的排序,一般都会首选时间复杂度是 O(nlogn) 的排序算法来实现排序函数。

 

 

如何优化快速排序?

这种 O(n2) 时间复杂度出现的主要原因还是因为我们分区点选的不够合理

最理想的分区点是:被分区点分开的两个分区中,数据的数量差不多

分区算法:    

1. 三数取中法     

我们从区间的首、尾、中间,分别取出一个数,然后对比大小,取这 3 个数的中间值作为分区点。这样每间隔某个固定的长度,取数据出来比较,将中间值作为分区点的分区算法,肯定要比单纯取某一个数据更好。但是,如果要排序的数组比较大,那“三数取中”可能就不够了,可能要“五数取中”或者“十数取中”。

2. 随机法

 

随机法就是每次从要排序的区间中,随机选择一个元素作为分区点。这种方法并不能保证每次分区点都选的比较好,但是从概率的角度来看,也不大可能会出现每次分区点都选的很差的情况,所以平均情况下,这样选的分区点是比较好的。时间复杂度退化为最糟糕的 O(n2) 的情况,出现的可能性不大。

 

 

快速排序是用递归来实现的。

      我们在递归那一节讲过,递归要警惕堆栈溢出。为了避免快速排序里,递归过深而堆栈过小,导致堆栈溢出,我们有两种解决办法:第一种是限制递归深度。一旦递归过深,超过了我们事先设定的阈值,就停止递归。第二种是通过在堆上模拟实现一个函数调用栈,手动模拟递归压栈、出栈的过程,这样就没有了系统栈大小的限制。

 

举例分析排序函数

 

qsort() 会优先使用归并排序来排序输入数据

要排序的数据量比较大的时候,qsort() 会改为用快速排序算法来排序

qsort() 选择分区点的方法就是“三数取中法”

递归太深会导致堆栈溢出的问题,qsort() 是通过自己实现一个堆上的栈,手动模拟递归来解决的。

qsort() 并不仅仅用到了归并排序和快速排序,它还用到了插入排序。

在快速排序的过程中,当要排序的区间中,元素的个数小于等于 4 时,qsort() 就退化为插入排序,不再继续用递归来做快速排序,因为我们前面也讲过,在小规模数据面前,O(n2) 时间复杂度的算法并不一定比 O(nlogn) 的算法执行时间长。

 

所以,对于小规模数据的排序,O(n2) 的排序算法并不一定比 O(nlogn) 排序算法执行的时间长。

对于小数据量的排序,我们选择比较简单、不需要递归的插入排序算法。

 

 

 

 

总结:

如何实现一个通用的高性能的排序函数?
一、如何选择合适的排序算法?
1.排序算法一览表
                 时间复杂度 是稳定排序? 是原地排序?
冒泡排序 O(n^2) 是 是
插入排序 O(n^2) 是 是
选择排序 O(n^2) 否 是
快速排序 O(nlogn) 否 是 
归并排序 O(nlogn) 是 否
桶排序 O(n) 是 否
计数排序 O(n+k),k是数据范围 是 否
基数排序 O(dn),d是纬度 是 否
2.为什选择快速排序?
1)线性排序时间复杂度很低但使用场景特殊,如果要写一个通用排序函数,不能选择线性排序。
2)为了兼顾任意规模数据的排序,一般会首选时间复杂度为O(nlogn)的排序算法来实现排序函数。
3)同为O(nlogn)的快排和归并排序相比,归并排序不是原地排序算法,所以最优的选择是快排。
二、如何优化快速排序?
导致快排时间复杂度降为O(n)的原因是分区点选择不合理,最理想的分区点是:被分区点分开的两个分区中,数据的数量差不多。如何优化分区点的选择?有2种常用方法,如下:
1.三数取中法
①从区间的首、中、尾分别取一个数,然后比较大小,取中间值作为分区点。
②如果要排序的数组比较大,那“三数取中”可能就不够用了,可能要“5数取中”或者“10数取中”。
2.随机法:每次从要排序的区间中,随机选择一个元素作为分区点。
3.警惕快排的递归发生堆栈溢出,有2中解决方法,如下:
①限制递归深度,一旦递归超过了设置的阈值就停止递归。
②在堆上模拟实现一个函数调用栈,手动模拟递归压栈、出栈过程,这样就没有系统栈大小的限制。
三、通用排序函数实现技巧
1.数据量不大时,可以采取用时间换空间的思路
2.数据量大时,优化快排分区点的选择
3.防止堆栈溢出,可以选择在堆上手动模拟调用栈解决
4.在排序区间中,当元素个数小于某个常数是,可以考虑使用O(n^2)级别的插入排序
5.用哨兵简化代码,每次排序都减少一次判断,尽可能把性能优化到极致

 

 

 

来源:  数据结构与算法之美   王争