Kubernetes介绍和使用
Kubernetes介绍
Kubernetes是Google开源的容器集群管理系统,是基于Docker构建一个容器的调度服务,提供资源调度、均衡容灾、服务注册、动态扩缩容等功能套件。
Kubernetes提供应用部署、维护、 扩展机制等功能,利用Kubernetes能方便地管理跨机器运行容器化的应用,其主要功能如下:
1) 使用Docker对应用程序包装(package)、实例化(instantiate)、运行(run)。
2) 将多台Docker主机抽象为一个资源,以集群的方式运行、管理跨机器的容器,包括任务调度、资源管理、弹性伸缩、滚动升级等功能。
3)使用编排系统(YAML File)快速构建容器集群,提供负载均衡,解决容器直接关联及通信问题
4) 解决Docker跨机器容器之间的通讯问题。
5)自动管理和修复容器,简单说,比如创建一个集群,里面有十个容器,如果某个容器异常关闭,那么,会尝试重启或重新分配容器,始终保证会有
十个容器在运行,反而杀死多余的。
Kubernetes的自我修复机制使得容器集群总是运行在用户期望的状态当前Kubernetes支持GCE、vShpere、CoreOS、OpenShift。
Kubernetes和Mesos的区别
1)Mesos是Apache下的开源分布式资源管理框架,它被称为是分布式系统的内核;
Kubernetes是Google开源的容器集群管理系统,实现基于Docker构建容器,利用Kubernetes能很方面管理多台Docker主机中的容器。
2)Mesos负责管理集群管资源(动态运行时,某机器有额外的资源,通知master来分配);
Kubernetes抽象出新的容器组合模型并且对其编排管理(把容器自由组合提供服务这事儿搞定了,从而微服务,serverless等才真
正的优雅地在开发和运维之间不吵架地被实现),而且kubernetes把以前运维的很多很难搞的东西都变得容易了。比如OpenStack,
Kubernetes是把OpenStack里面的VM换成了容器,但是实现地更漂亮,更精简,更抽象和本质化,用起来也更容易。
3)Mesos相比Kubernetes发展的时间更久,总体情况更成熟,在生产环境有更多的使用经验,国外使用Mesos的公司有Twitter,Apple,
Airbnb,Uber等,国内也有大批知名公司在使用Mesos,比如:小米、当当、豆瓣、去哪儿、携程、唯品会、知乎、新浪微博、爱奇艺、
七牛、唯品会、bilibili、中国联通、中国移动、中国电信、华为、数人云等等。中大型公司会更倾向于使用Mesos,
因为本身这些公司有一定的开发能力,Mesos提供了良好的API而且有非常多成熟的Framework跑在Mesos上,Mesos+Marathon+Zookeeper
正常情况可以满足绝大部分需求,只需要写JSON或者DSL定义好service/application就好,只有一些特殊情况才确实需要写自己的Framework。
而kubernetes(k8s)现在也正在慢慢成熟起来,它在生产环境显然还需要更多时间来验证。京东目前已经在kubernetes上跑15W+容器了。
Mesos现在越来越适应并且被添加上了很多Kubernete的概念同时支持了很多Kubernetes的API。因此如果你需要它们的话,它将是对你的
Kubernetes应用去获得更多能力的一个便捷方式(比如高可用的主干、更加高级的调度命令、去管控很大数目结点的能力),同时能够很好的
适用于产品级工作环境中(毕竟Kubernetes任然还是一个初始版本)。
4)如果你是一个集群世界的新手,Kubernetes是一个很棒的起点。它是最快的、最简单的、最轻量级的方法去摆脱束缚,同时开启面向集群开发的实践。
它提供了一个高水平的可移植方案,因为它是被一些不同的贡献者所支持的( 例如微软、IBM、Red Hat、CoreOs、MesoSphere、VMWare等等)。
如果你已经有已经存在的工作任务(Hadoop、Spark、Kafka等等),Mesos给你提供了一个可以让你将不同工作任务相互交错的框架,然后混合进一个
包含Kubernetes 应用的新的东西。
如果你还没有用Kubernetes 系列框架完成项目的能力,Mesos给了你一个减压阀。
Kubernetes结构图
kubernetes角色组成
1)Pod
在Kubernetes系统中,调度的最小颗粒不是单纯的容器,而是抽象成一个Pod,Pod是一个可以被创建、销毁、调度、管理的最小的部署单元。
比如一个或一组容器。Pod是kubernetes的最小操作单元,一个Pod可以由一个或多个容器组成;同一个Pod只能运行在同一个主机上,共享相
同的volumes、network、namespace;
2)ReplicationController(RC)
RC用来管理Pod,一个RC可以由一个或多个Pod组成,在RC被创建后,系统会根据定义好的副本数来创建Pod数量。在运行过程中,如果Pod数量
小于定义的,就会重启停止的或重新分配Pod,反之则杀死多余的。当然,也可以动态伸缩运行的Pods规模或熟悉。RC通过label关联对应的Pods,
在滚动升级中,RC采用一个一个替换要更新的整个Pods中的Pod。
Replication Controller是Kubernetes系统中最有用的功能,实现复制多个Pod副本,往往一个应用需要多个Pod来支撑,并且可以保证其复制的
副本数,即使副本所调度分配的宿主机出现异常,通过Replication Controller可以保证在其它主宿机启用同等数量的Pod。Replication Controller
可以通过repcon模板来创建多个Pod副本,同样也可以直接复制已存在Pod,需要通过Label selector来关联。
3)Service
Service定义了一个Pod逻辑集合的抽象资源,Pod集合中的容器提供相同的功能。集合根据定义的Label和selector完成,当创建一个Service后,
会分配一个Cluster IP,这个IP与定义的端口提供这个集合一个统一的访问接口,并且实现负载均衡。
Services是Kubernetes最外围的单元,通过虚拟一个访问IP及服务端口,可以访问我们定义好的Pod资源,目前的版本是通过iptables的nat转发来实现,
转发的目标端口为Kube_proxy生成的随机端口,目前只提供GOOGLE云上的访问调度,如GCE。
4)Label
Label是用于区分Pod、Service、RC的key/value键值对;仅使用在Pod、Service、Replication Controller之间的关系识别,但对这些单元本身进行操
作时得使用name标签。Pod、Service、RC可以有多个label,但是每个label的key只能对应一个;主要是将Service的请求通过lable转发给后端提供服务的Pod集合;
说说个人一点看法,目前Kubernetes保持一周一小版本、一个月一大版本的节奏,迭代速度极快,同时也带来了不同版本操作方法的差异,另外官网文档更新速度
相对滞后及欠缺,给初学者带来一定挑战。在上游接入层官方侧重点还放在GCE(Google Compute Engine)的对接优化,针对个人私有云还未推出一套可行的接入
解决方案。在v0.5版本中才引用service代理转发的机制,且是通过iptables来实现,在高并发下性能令人担忧。但作者依然看好Kubernetes未来的发展,至少目前
还未看到另外一个成体系、具备良好生态圈的平台,相信在V1.0时就会具备生产环境的服务支撑能力。
kubernetes组件组成
1)kubectl
客户端命令行工具,将接受的命令格式化后发送给kube-apiserver,作为整个系统的操作入口。
2)kube-apiserver
作为整个系统的控制入口,以REST API服务提供接口。
3)kube-controller-manager
用来执行整个系统中的后台任务,包括节点状态状况、Pod个数、Pods和Service的关联等。
4)kube-scheduler
负责节点资源管理,接受来自kube-apiserver创建Pods任务,并分配到某个节点。
5)etcd
负责节点间的服务发现和配置共享。
6)kube-proxy
运行在每个计算节点上,负责Pod网络代理。定时从etcd获取到service信息来做相应的策略。
7)kubelet
运行在每个计算节点上,作为agent,接受分配该节点的Pods任务及管理容器,周期性获取容器状态,反馈给kube-apiserver。
8)DNS
一个可选的DNS服务,用于为每个Service对象创建DNS记录,这样所有的Pod就可以通过DNS访问服务了。
Kubelet
根据上图可知Kubelet是Kubernetes集群中每个Minion和Master API Server的连接点,Kubelet运行在每个Minion上,是Master API Server和Minion之间的桥梁,
接收Master API Server分配给它的commands和work,与持久性键值存储etcd、file、server和http进行交互,读取配置信息。Kubelet的主要工作是管理Pod和容
器的生命周期,其包括Docker Client、Root Directory、Pod Workers、Etcd Client、Cadvisor Client以及Health Checker组件,具体工作如下:
1) 通过Worker给Pod异步运行特定的Action。
2) 设置容器的环境变量。
3) 给容器绑定Volume。
4) 给容器绑定Port。
5) 根据指定的Pod运行一个单一容器。
6) 杀死容器。
7) 给指定的Pod创建network 容器。
8) 删除Pod的所有容器。
9) 同步Pod的状态。
10) 从Cadvisor获取container info、 pod info、root info、machine info。
11) 检测Pod的容器健康状态信息。
12) 在容器中运行命令。
kubernetes基本部署步骤
1)minion节点安装docker
2)minion节点配置跨主机容器通信
3)master节点部署etcd、kube-apiserver、kube-controller-manager和kube-scheduler组件
4)minion节点部署kubelet、kube-proxy组件
温馨提示:
如果minion主机没有安装docker,启动kubelet时会报如下错误:
Could not load kubeconfig file /var/lib/kubelet/kubeconfig: stat /var/lib/kubelet/kubeconfig: no such file or directory. Trying auth path instead.
Could not load kubernetes auth path /var/lib/kubelet/kubernetes_auth: stat /var/lib/kubelet/kubernetes_auth: no such file or directory. Continuing with defaults.
No cloud provider specified.
kubernetes集群环境部署过程记录
IP | 主机名 | 节点及功能 | 系统版本 |
192.168.80.136 | k8s-master etcd | master, etcd | centos 7.7 |
192.168.80.137 | k8s-node-1 | node1 | centos 7.7 |
192.168.80.136 | k8s-node-2 | node2 | centos 7.7 |
1)设置三台机器的主机名
|
2)关闭三台机器上的防火墙
|
3)现在开始部署Master
OPTIONS='--selinux-enabled=false --log-driver=journald --signature-verification=false' OPTIONS='--insecure-registry registry:5000'
ETCD_NAME=master #节点名称 ETCD_LISTEN_CLIENT_URLS="http://0.0.0.0:2379" #监听客户端地址
KUBE_API_ADDRESS="--insecure-bind-address=0.0.0.0"
KUBE_LOGTOSTDERR="--logtostderr=true"
|
4)接着部署Node(在两台node节点机器上都要操作)
OPTIONS='--selinux-enabled=false --log-driver=journald --signature-verification=false' OPTIONS='--insecure-registry registry:5000'
KUBE_LOGTOSTDERR="--logtostderr=true"
KUBELET_ADDRESS="--address=0.0.0.0"
(3)配置数据转发 if [ `grep -c 'net.ipv4.ip_forward' /etc/sysctl.conf` -eq 0 ]; then
|
如果无法下载镜像
yum -y install *rhsm*
wget http://mirror.centos.org/centos/7/os/x86_64/Packages/python-rhsm-certificates-1.19.10-1.el7_4.x86_64.rpm
rpm2cpio python-rhsm-certificates-1.19.10-1.el7_4.x86_64.rpm | cpio -iv --to-stdout ./etc/rhsm/ca/redhat-uep.pem | tee /etc/rhsm/ca/redhat-uep.pem
docker pull registry.access.redhat.com/rhel7/pod-infrastructure:latest
查看状态
|
kubernetes常用命令
|
5)创建覆盖网络——Flannel
|
|
6)部署nginx pod 和复制器
以下面的图来安装一个简单的静态内容的nginx应用:
用复制器启动一个2个备份的nginx Pod,然后在前面挂Service,一个service只能被集群内部访问,一个能被集群外的节点访问。下面所有的命令都是在master管理节点上运行的。
|
1)可以扩容nginx应用容器,依次添加对应的应用容器的pod、service-clusterip、service-nodeport的yaml文件即可。
注意yaml文件中的name名。
2)当然也可以添加其他应用容器,比如tomcat,也是依次创建pod、service-clusterip、service-nodeport的yaml文件。
注意yaml文件中的name名和port端口不要重复
3)后面应用容器的集群环境完成后(外部可访问的端口是固定的),可以考虑做下master控制机的集群环境(即做etcd集群)。
可以在控制节点做负载均衡,还可以通过keepalived做高可用。
---------------------------------------------------------
下面是tomcat应用容器创建实例中的3个yaml文件
[[email protected] kubermange]# cat tomcat-rc.yaml
apiVersion: v1
kind: ReplicationController
metadata:
name: tomcat-controller
spec:
replicas: 2
selector:
name: tomcat
template:
metadata:
labels:
name: tomcat
spec:
containers:
- name: tomcat
image: docker.io/tomcat
ports:
- containerPort: 8080
[[email protected] kubermange]# cat tomcat-service-clusterip.yaml
apiVersion: v1
kind: Service
metadata:
name: tomcat-service-clusterip
spec:
ports:
- port: 8801
targetPort: 8080
protocol: TCP
selector:
name: tomcat
[[email protected] kubermange]# cat tomcat-service-nodeport.yaml
apiVersion: v1
kind: Service
metadata:
name: tomcat-service-nodeport
spec:
ports:
- port: 8880
targetPort: 8080
protocol: TCP
type: NodePort
selector:
name: tomcat
查看外部可访问的tomcat service的端口
[[email protected] kubermange]# kubectl -s http://k8s-master:8080 describe service tomcat-service-nodeport 2>/dev/null | grep NodePort
Type: NodePort
NodePort: <unset> 32095/TCP