概率论几大分布的期望和方差证明整合

前言

简介

       本文是对概率论中常见分布包括二项分布、0-1分布、泊松分布、均匀分布、正态分布、指数分布的期望和方差的证明整合,附加自己的推导或理解。

导览

      二项分布 (Binomial Distribution)
      泊松分布 (Poisson’s Distribution)
      均匀分布 (Uniform Distribution)
      正态分布 (Normal Distribution)
      指数分布 (Exponential Distribution)

总结

      二项分布 (Binomial Distribution) X~B(n,p):E(X)=np,D(X)=np(1-p)=npq 。
      0-1分布 X~B(1,p):E(X)=p,D(X)=p(1-p)=pq 。
      泊松分布 (Poisson’s Distribution) X~P(λ\lambda):E(X)=λ,D(X)=λ 。
      均匀分布 (Uniform Distribution) X~U(a,b) :E(X)=(a+b)/2(a+b)/2,D(X)=(ba)2/12(b-a)^2/12
      正态分布 (Normal Distribution) X~N(μ,σ):E(X)=μ,D(X)=σ2σ^2
      指数分布 (Exponential Distribution)X~Γ(1,β):E(X)=1/λ1/λ,D(X)=1/λ21/λ^2

正文

二项分布 (Binomial Distribution) From QUETAL and chs007chs

Part Ⅰ From QUETAL

X~B(n,p)

分布律:P(X=k)=(nk)pkqnkk=0,1,2,..,nq=1pP(X=k) = {n\choose k}p^kq^{n-k},k = 0,1,2,..,n,q = 1-p
期望:
EX=k=0nk(nk)pkqnk=k=1nk(nk)pkqnk=k=1nkn!k!(nk)!pkqnk=npk=1n(n1)!(k1)!(nk)!pk1q(n1)(k1)=npk=1n(n1k1)pk1q(n1)(k1)=np[(n10)p0qn1+(n11)p1qn2+...+(n1n1)pn1q0]=np EX = \sum_{k=0}^n k {n\choose k}p^kq^{n-k} \\ = \sum_{k=1}^n k {n\choose k}p^kq^{n-k} \\ = \sum_{k=1}^n k {\frac{n!}{k!(n-k)!}}p^kq^{n-k} \\ = np\sum_{k=1}^n {\frac{(n-1)!}{(k-1)!(n-k)!}}p^{k-1}q^{(n-1)-(k-1)} \\ = np\sum_{k=1}^n{n-1\choose k-1}p^{k-1}q^{(n-1)-(k-1)}\\ = np[{n-1\choose 0}p^0q^{n-1}+{n-1\choose 1}p^1q^{n-2}+...+{n-1\choose n-1}p^{n-1}q^0] \\ = np
方差:DX=EX2(EX)2DX = EX^2-(EX)^2
计算EX^2:
EX2=k=1nk2(nk)pkqnk,k=0,1,2,..,n,q=1p=k=1n[k(k1)+k](nk)pkqnk=k=1nk(k1)(nk)pkqnk+k=1nk(nk)pkqnkk=1nk(nk)pkqnk=EX=npk=1nk(k1)(nk)pkqnk=k=1nk(k1)n!k!(nk)!p2pk2qnk=k=2nk(k1)n!k!(nk)!p2pk2qnk EX^2 = \sum_{k=1}^nk^2{n\choose k}p^kq^{n-k}, k = 0,1,2,..,n,q = 1-p\\ = \sum_{k=1}^n[k(k-1)+k]{n\choose k}p^kq^{n-k}\\ = \sum_{k=1}^nk(k-1){n\choose k}p^kq^{n-k} + \sum_{k=1}^nk{n\choose k}p^kq^{n-k}\\ 其中, \sum_{k=1}^nk{n\choose k}p^kq^{n-k} = EX = np\\ \sum_{k=1}^nk(k-1){n\choose k}p^kq^{n-k} \\ = \sum_{k=1}^nk(k-1){\frac{n!}{k!(n-k)!}}p^2p^{k-2}q^{n-k} \\ = \sum_{k=2}^nk(k-1){\frac{n!}{k!(n-k)!}}p^2p^{k-2}q^{n-k} \\ 注:特别注意这里k=1时项为0,所以可以从k=2开始计算。=k=1nn(n1)(n2)!(k2)!(nk)!p2pk2q[(n2)(k2)]=n(n1)p2k=2n(n2)!(k2)!(nk)!pk2q[(n2)(k2)]=n(n1)p2k=2n(n2k2)pk2q[(n2)(k2)]=n(n1)p2EX2=n(n1)p2+np\\ = \sum_{k=1}^n{\frac{n(n-1)(n-2)!}{(k-2)!(n-k)!}}p^2p^{k-2}q^{[(n-2)-(k-2)]} \\ = n(n-1)p^2\sum_{k=2}^n{\frac{(n-2)!}{(k-2)!(n-k)!}}p^{k-2}q^{[(n-2)-(k-2)]}\\ = n(n-1)p^2\sum_{k=2}^n{n-2\choose k-2}p^{k-2}q^{[(n-2)-(k-2)]}\\ = n(n-1)p^2 \\ \rightarrow EX^2 = n(n-1)p^2+np \\ DX=EX2(EX)2=npnp2=np(1p) \rightarrow DX = EX^2-(EX)^2 = np-np^2 = np(1-p)

Part Ⅱ 0-1分布 From chs007chs

X~B(1,p)

也可以从上式直接推导得到
概率论几大分布的期望和方差证明整合

泊松分布 (Poisson’s Distribution) From saltriver

X~P(λ\lambda)

分布律:P(X=k)=λkeλk!P(X=k)=\frac{\lambda ^{k}e^{-\lambda }}{k!}
期望:
E(X)=k=0kλkeλk! E(X)=\sum_{k=0}^{\infty }k\cdot \frac{\lambda ^{k}e^{-\lambda }}{k!} \\ k=0kλkeλk!=0 因为k=0时, k⋅λke−λk!=0 \\ E(X)=k=1kλkeλk! E(X)=\sum_{k=1}^{\infty }k\cdot \frac{\lambda ^{k}e^{-\lambda }}{k!} \\ E(X)=k=1kλkeλk!=k=1λkeλ(k1)!=k=1λk1λeλ(k1)!=λeλk=1λk1(k1)! E(X)=\sum_{k=1}^{\infty }k\cdot \frac{\lambda ^{k}e^{-\lambda }}{k!}=\sum_{k=1}^{\infty } \frac{\lambda ^{k}e^{-\lambda }}{(k-1)!}=\sum_{k=1}^{\infty } \frac{\lambda ^{k-1}\lambda e^{-\lambda }}{(k-1)!}=\lambda e^{-\lambda }\sum_{k=1}^{\infty } \frac{\lambda ^{k-1}}{(k-1)!} \\ ex=1+x+x22!+x33!+...+xnn!+...=k=1xk1(k1)! 用到泰勒展开式:e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+...+\frac{x^{n}}{n!}+...=\sum_{k=1}^{\infty } \frac{x ^{k-1}}{(k-1)!} \\ E(X)=λeλk=1λk1(k1)!=λeλeλ=λ E(X)=\lambda e^{-\lambda }\sum_{k=1}^{\infty } \frac{\lambda ^{k-1}}{(k-1)!}=\lambda e^{-\lambda }e^{\lambda }=\lambda
方差:DX=EX2(EX)2DX = EX^2-(EX)^2
计算EX^2:
E(X2)=k=0k2λkeλk!=λeλk=1kλk1(k1)!=λeλk=1(k1+1)λk1(k1)! E(X^2)=\sum_{k=0}^{\infty }k^2 \cdot \frac{\lambda ^{k}e^{-\lambda }}{k!}=\lambda e^{-\lambda} \sum_{k=1}^{\infty } \frac{k \lambda ^{k-1}}{(k-1)!}=\lambda e^{-\lambda} \sum_{k=1}^{\infty } \frac{(k-1+1) \lambda ^{k-1}}{(k-1)!} \\ =λeλ(m=0mλmm!+m=0λmm!)(m=k1) =\lambda e^{-\lambda} (\sum_{m=0}^{\infty } \frac{m \cdot \lambda ^{m}}{m!}+\sum_{m=0}^{\infty } \frac{ \lambda ^{m}}{m!}) (m=k-1) \\ =λeλ(λm=1λm1(m1)!+m=0λmm!) =\lambda e^{-\lambda} ( \lambda \cdot \sum_{m=1}^{\infty } \frac{\lambda ^{m-1}}{(m-1)!}+\sum_{m=0}^{\infty } \frac{ \lambda ^{m}}{m!}) \\ =λeλ(λeλ+eλ)=λ(λ+1) =\lambda e^{-\lambda}(\lambda e^{\lambda}+e^\lambda)=\lambda(\lambda+1) \\ D(X)=E(X2)(E(X))2=λ(λ+1)λ2=λ \rightarrow D(X)=E(X^2)-(E(X))^2=\lambda(\lambda+1)-\lambda^2=\lambda


均匀分布 (Uniform Distribution) From chs007chs

X~U(a,b)

推导较为简单。
概率论几大分布的期望和方差证明整合

正态分布 (Normal Distribution) From 一只驽马

X~N(μ,σ)

概率密度函数:fX(x)=1σ2πexp{(xμ)22σ2}f_X(x) =\frac{1}{\sigma\sqrt{2\pi}}\exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}

期望:E(x)=μ+N(xμ=0,σ2)dx=μE(x) = \mu\int_{-\infty}^{+\infty}\mathcal{N}(x|\mu' = 0, \sigma^2)dx = \mu

方差:V(X)=σ24π12π2=σ2\Rightarrow V(X) = \sigma^2\frac{4}{\sqrt{\pi}}\frac 12 \frac {\sqrt \pi}{2} = \sigma^2


指数分布 (Exponential Distribution) From saltriver

X~Γ(1,β)

概率密度函数:概率论几大分布的期望和方差证明整合
期望:
E(X)=xf(x)dx=0xf(x)dx=0xλeλxdx=1λ0λxeλxdλxu=λxE(X)=1λ0ueudu=1λ[(euueu)(,0)]=1λ E(X)=\int_{-\infty }^{\infty }|x|f(x)dx=\int_{0}^{\infty }xf(x)dx=\int_{0}^{\infty }x\cdot\lambda e^{-\lambda x}dx=\frac {1} {\lambda}\int_{0}^{\infty }\lambda xe^{-\lambda x}d\lambda x \\ 令u=λx,E(X)=\frac {1} {\lambda}\int_{0}^{\infty }ue^{-u}du=\frac {1} {\lambda}[(-e^{-u}-ue^{-u})|(\infty,0)]=\frac {1} {\lambda} \\
方差:DX=EX2(EX)2DX = EX^2-(EX)^2
计算EX^2:
E(X2)=x2f(x)dx=0x2f(x)dx=0x2λeλxdxE(X2)=1λ20λxλxeλxdλxu=λxE(X2)=1λ20u2eudu=1λ2[(2eu2ueuu2eu)(,0)]=1λ22=2λ2D(X)=E(X2)(E(X))2=2λ2(1λ)2=1λ2 E(X^2)=\int_{-\infty }^{\infty }|x^2|f(x)dx=\int_{0}^{\infty }x^2f(x)dx=\int_{0}^{\infty }x^2\cdot\lambda e^{-\lambda x}dx \\ E(X^2)=\frac {1} {\lambda^2}\int_{0}^{\infty }\lambda x \lambda xe^{-\lambda x}d\lambda x \\ 令u=λx,E(X^2)=\frac {1} {\lambda^2}\int_{0}^{\infty }u^2e^{-u}du=\frac {1} {\lambda^2}[(-2e^{-u}-2ue^{-u}-u^2e^{-u})|(\infty,0)]=\frac {1} {\lambda^2}\cdot 2=\frac {2} {\lambda^2} \\ \rightarrow D(X)=E(X^2)-(E(X))^2=\frac {2} {\lambda^2}-(\frac {1} {\lambda})^2=\frac {1} {\lambda^2}