UA MATH564 概率论 QE练习 Glivenko–Cantelli定理

UA MATH564 概率论 QE练习 Glivenko–Cantelli定理

UA MATH564 概率论 QE练习 Glivenko–Cantelli定理
Part a
Notice P(Xit)=F(t),i=1,,nP(X_i \le t) = F(t),i = 1,\cdots,n
E[F^n(t)]=E[1ni=1nI(Xit)]=1ni=1nE[I(Xit)]=1ni=1nP(Xi<t)=F(t)E[\hat{F}_n(t)] = E \left[ \frac{1}{n}\sum_{i=1}^n I(X_i \le t) \right] = \frac{1}{n}\sum_{i=1}^nE \left[ I(X_i \le t) \right] = \frac{1}{n}\sum_{i=1}^nP(X_i<t) = F(t)

Part b
P(F^n(t)=k/n)=P(1ni=1nI(Xit)=q)=P(i=1nI(Xit)=k)=Cnk[F(t)]k[1F(t)]nk,k=1,,nP(\hat{F}_n(t)=k/n) = P \left( \frac{1}{n}\sum_{i=1}^n I(X_i \le t) = q \right) = P \left( \sum_{i=1}^n I(X_i \le t) = k \right) \\ = C_n^k[F(t)]^{k}[1-F(t)]^{n-k},k=1,\cdots,n

This means nF^n(t)Binom(n,F(t))n\hat{F}_n(t) \sim Binom(n,F(t)).

Part c
Calculate
E[F^n(t)]=1nE[nF^n(t)]=F(t)Var(F^n(t))=1n2Var(nF^n(t))=F(t)[1F(t)]nE[\hat{F}_n(t)] = \frac{1}{n}E[n\hat{F}_n(t)] = F(t) \\ Var(\hat{F}_n(t)) = \frac{1}{n^2}Var(n\hat{F}_n(t)) = \frac{F(t)[1-F(t)]}{n}

By CLT,
F^n(t)F(t)F(t)[1F(t)]ndN(0,1)n[F^n(t)F(t)]dN(0,F(t)[1F(t)])\frac{\hat{F}_n(t) - F(t)}{\sqrt{\frac{F(t)[1-F(t)]}{n}}} \to_d N(0,1) \Rightarrow \sqrt{n}[\hat{F}_n(t) - F(t)] \to_d N(0,F(t)[1-F(t)])

Glivenko–Cantelli定理

Glivenko–Cantelli定理说的是当nn \to \infty时,F^n\hat F_n收敛到FF。上面的题目提到了,对于给定的ttF^n(t)\hat{F}_n(t)会收敛到F(t)F(t),因为
Var(F^n(t))=F(t)[1F(t)]n0, as nVar(\hat{F}_n(t)) = \frac{F(t)[1-F(t)]}{n} \to 0,\ as \ n\to \infty

因此F^n(t)F(t)L20\hat{F}_n(t) - F(t) \to_{L_2} 0。一个从分析出发的证明会显得更简单,经验分布的性质说明
F^n(xj)F(xj)1n,j=1,,n1|\hat{F}_n(x_j) - F(x_j)| \le \frac{1}{n},\forall j = 1,\cdots,n-1

下面估计
supF^n(x)F(x)maxF^n(xj)F(xj)+1n\sup|\hat{F}_n(x) - F(x)| \le \max|\hat{F}_n(x_j) - F(x_j)| + \frac{1}{n}

nn \to \infty时,maxF^n(xj)F(xj)0\max|\hat{F}_n(x_j) - F(x_j)| \to 0,因此F^nLF\hat F_n \to_{L_{\infty}} F