GC参数

串行收集器

最古老,最稳定,效率高,可能会产生较长的停顿。

GC参数

-XX:+UseSerialGC
新生代、老年代使用串行回收
新生代复制算法
老年代标记-压缩

并行收集器

ParNew

GC参数

-XX:+UseParNewGC
新生代并行
老年代串行
Serial收集器新生代的并行版本
复制算法
多线程,需要多核支持

-XX:ParallelGCThreads 限制线程数量

Parallel收集器

GC参数

类似ParNew
新生代复制算法
老年代 标记-压缩
更加关注吞吐量
-XX:+UseParallelGC 
使用Parallel收集器+ 老年代串行
-XX:+UseParallelOldGC

使用Parallel收集器+ 并行老年代

-XX:MaxGCPauseMills
最大停顿时间,单位毫秒
GC尽力保证回收时间不超过设定值
-XX:GCTimeRatio
0-100的取值范围
垃圾收集时间占总时间的比
默认99,即最大允许1%时间做GC
这两个参数是矛盾的。因为停顿时间和吞吐量不可能同时调优

CMS收集器

GC参数

Concurrent Mark Sweep 并发标记清除
标记-清除算法
与标记-压缩相比
并发阶段会降低吞吐量
老年代收集器(新生代使用ParNew)

-XX:+UseConcMarkSweepGC

CMS运行过程比较复杂,着重实现了标记的过程,可分为
初始标记
根可以直接关联到的对象
速度快
并发标记(和用户线程一起)
主要标记过程,标记全部对象
重新标记
由于并发标记时,用户线程依然运行,因此在正式清理前,再做修正
并发清除(和用户线程一起)

基于标记结果,直接清理对象

特点
尽可能降低停顿
会影响系统整体吞吐量和性能
比如,在用户线程运行过程中,分一半CPU去做GC,系统性能在GC阶段,反应速度就下降一半
清理不彻底
因为在清理阶段,用户线程还在运行,会产生新的垃圾,无法清理
因为和用户线程一起运行,不能在空间快满时再清理
-XX:CMSInitiatingOccupancyFraction设置触发GC的阈值

如果不幸内存预留空间不够,就会引起concurrent mode failure

-XX:+ UseCMSCompactAtFullCollection Full GC后,进行一次整理
整理过程是独占的,会引起停顿时间变长
-XX:+CMSFullGCsBeforeCompaction 
设置进行几次Full GC后,进行一次碎片整理
-XX:ParallelCMSThreads

设定CMS的线程数量

参数整理

-XX:+UseSerialGC:在新生代和老年代使用串行收集器
-XX:SurvivorRatio:设置eden区大小和survivior区大小的比例
-XX:NewRatio:新生代和老年代的比
-XX:+UseParNewGC:在新生代使用并行收集器
-XX:+UseParallelGC :新生代使用并行回收收集器
-XX:+UseParallelOldGC:老年代使用并行回收收集器
-XX:ParallelGCThreads:设置用于垃圾回收的线程数
-XX:+UseConcMarkSweepGC:新生代使用并行收集器,老年代使用CMS+串行收集器
-XX:ParallelCMSThreads:设定CMS的线程数量

-XX:CMSInitiatingOccupancyFraction:设置CMS收集器在老年代空间被使用多少后触发

-XX:+UseCMSCompactAtFullCollection:设置CMS收集器在完成垃圾收集后是否要进行一次内存碎片的整理

-XX:CMSFullGCsBeforeCompaction:设定进行多少次CMS垃圾回收后,进行一次内存压缩
-XX:+CMSClassUnloadingEnabled:允许对类元数据进行回收
-XX:CMSInitiatingPermOccupancyFraction:当永久区占用率达到这一百分比时,启动CMS回收
-XX:UseCMSInitiatingOccupancyOnly:表示只在到达阀值的时候,才进行CMS回收
Tomcat实例演示