《Python数据可视化之Matplotlib与Pyecharts》之词云
11.8.2 商品类型关键词词云
为了分析该企业商品类型的构成情况,绘制了商品类型的关键词词云,Python代码如下:
# -*- coding: utf-8 -*-
#声明Notebook类型,必须在引入pyecharts.charts等模块前声明
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = NotebookType.JUPYTER_LAB
from pyecharts import options as opts
from pyecharts.charts import Page, WordCloud
from pyecharts.globals import SymbolType
from impala.dbapi import connect
#读取Hadoop表数据
conn = connect(host='192.168.1.7', port=10000, database='sales',auth_mechanism='NOSASL',user='root')
cursor = conn.cursor()
sql_num = "SELECT subcategory,count(subcategory) FROM orders where dt=2019 GROUP BY subcategory"
cursor.execute(sql_num)
sh = cursor.fetchall()
v1 = []
for s in sh:
v1.append((s[0],s[1]))
#画词云图
def wordcloud() -> WordCloud:
c = (
WordCloud()
.add("", v1, word_size_range=[20, 160],shape=SymbolType.DIAMOND)
.set_global_opts(title_opts=opts.TitleOpts(title="2019年销售商品类型关键词词云"),toolbox_opts=opts.ToolboxOpts())
)
return c
#第一次渲染时候调用load_javasrcript文件
wordcloud().load_javascript()
#展示数据可视化图表
wordcloud().render_notebook()
在Jupyter lab中运行上述代码,生成如图11-8所示的词云。
图11-8 词云