Logistic回归原理及公式推导

Logistic回归为概率型非线性回归模型,是研究二分类观察结果Logistic回归原理及公式推导与一些影响因素Logistic回归原理及公式推导之间关系的一种多

分析方法。通常的问题是,研究某些因素条件下某个结果是否发生,比如医学中根据病人的一些症状来判断它是

否患某种病。

 

在讲解Logistic回归理论之前,我们先从LR分类器说起。LR分类器,即Logistic Regression Classifier。

在分类情形下,经过学习后的LR分类器是一组权值Logistic回归原理及公式推导,当测试样本的数据输入时,这组权值与测试数据按

线性加和得到

 

           Logistic回归原理及公式推导

 

这里Logistic回归原理及公式推导是每个样本的Logistic回归原理及公式推导个特征。

之后按照sigmoid函数的形式求出

 

           Logistic回归原理及公式推导

 

由于sigmoid函数的定义域为Logistic回归原理及公式推导,值域为Logistic回归原理及公式推导,因此最基本的LR分类器适合对两类目标进行分类。

所以Logistic回归最关键的问题就是研究如何求得Logistic回归原理及公式推导这组权值。这个问题是用极大似然估计来做的。

 

 

下面正式地来讲Logistic回归模型。

 

考虑具有Logistic回归原理及公式推导个独立变量的向量Logistic回归原理及公式推导,设条件慨率Logistic回归原理及公式推导为根据观测量相对于某事件Logistic回归原理及公式推导发生的

概率。那么Logistic回归模型可以表示为

 

           Logistic回归原理及公式推导

这里Logistic回归原理及公式推导称为Logistic函数。其中Logistic回归原理及公式推导

 

那么在Logistic回归原理及公式推导条件下Logistic回归原理及公式推导不发生的概率为

 

           Logistic回归原理及公式推导

 

所以事件发生与不发生的概率之比为

 

           Logistic回归原理及公式推导

 

这个比值称为事件的发生比(the odds of experiencing an event),简记为odds。

 

对odds取对数得到

 

           Logistic回归原理及公式推导

 

 

可以看出Logistic回归都是围绕一个Logistic函数来展开的。接下来就讲如何用极大似然估计求分类器的参数。

 

假设有Logistic回归原理及公式推导个观测样本,观测值分别为Logistic回归原理及公式推导,设Logistic回归原理及公式推导为给定条件下得到Logistic回归原理及公式推导的概率,同样地,

Logistic回归原理及公式推导的概率为Logistic回归原理及公式推导,所以得到一个观测值的概率为Logistic回归原理及公式推导

 

因为各个观测样本之间相互独立,那么它们的联合分布为各边缘分布的乘积。得到似然函数为

 

                                         Logistic回归原理及公式推导

 

然后我们的目标是求出使这一似然函数的值最大的参数估计,最大似然估计就是求出参数Logistic回归原理及公式推导,使得Logistic回归原理及公式推导

取得最大值,对函数Logistic回归原理及公式推导取对数得到

 

            Logistic回归原理及公式推导

 

继续对这Logistic回归原理及公式推导Logistic回归原理及公式推导分别求偏导,得到Logistic回归原理及公式推导个方程,比如现在对参数Logistic回归原理及公式推导求偏导,由于

 

             Logistic回归原理及公式推导

 

所以得到

 

            Logistic回归原理及公式推导

 

这样的方程一共有Logistic回归原理及公式推导个,所以现在的问题转化为解这Logistic回归原理及公式推导个方程形成的方程组。

 

上述方程比较复杂,一般方法似乎不能解之,所以我们引用了牛顿-拉菲森迭代方法求解。

 

利用牛顿迭代求多元函数的最值问题以后再讲。。。

 

简单牛顿迭代法:https://en.wikipedia.org/wiki/Newton%27s_method

 

实际上在上述似然函数求最大值时,可以用梯度上升算法,一直迭代下去。梯度上升算法和牛顿迭代相比,收敛速度

慢,因为梯度上升算法是一阶收敛,而牛顿迭代属于二阶收敛。