程序员编程艺术第四十一章 四十二章 荷兰国旗 矩阵相乘Strassen算法
分享一下我老师大神的人工智能教程!零基础,通俗易懂!http://blog.****.net/jiangjunshow
也欢迎大家转载本篇文章。分享知识,造福人民,实现我们中华民族伟大复兴!
第四十一章~四十二章:荷兰国旗问题、矩阵相乘之Strassen算法
前言
本文要讲的两个问题:荷兰国旗和矩阵相乘之Strassen算法都跟分治法相关,故把这两个问题放到了一起。所谓分治,便是分而治之的意思,好比打战时面对敌人庞大的武装部队,采取避其主力,各个击破的策略。
有何问题,欢迎随时不吝指正,thanks。
第十一章、荷兰国旗问题
题目描述
现有红白蓝三个不同颜色的小球,乱序排列在一起,请重新排列这些小球,使得红白蓝三色的同颜色的球在一起。这个问题之所以叫荷兰国旗,是因为我们可以将红白蓝三色小球想象成条状物,有序排列后正好组成荷兰国旗。如下图所示:
思路分析
初看此题,我们貌似除了暴力解决并无好的办法,但联想到我们所熟知的快速排序算法呢?我们知道,快速排序时基于分治模式处理的,对一个典型子数组A[p...r]排序的分治过程为三个步骤:
- 分解:A[p..r]被划分为俩个(可能空)的子数组A[p ..q-1]和A[q+1 ..r],使得A[p ..q-1] <= A[q] <= A[q+1 ..r]
- .解决:通过递归调用快速排序,对子数组A[p ..q-1]和A[q+1 ..r]排序。
- 合并。
也就是说,快速排序的主要思想便是依托于一个partition分治过程,每一趟排序的过程中,选取的主元都会把整个数组排列成一大一小的序列,继而递归排序完整个数组。
如下伪代码所示:
快速排序算法的关键是PARTITION过程,它对A[p..r]进行就地重排:
PARTITION(A, p, r)
1 x ← A[r]
2 i ← p - 1
3 for j ← p to r - 1
4 do if A[j] ≤ x
5 then i ← i + 1
6 exchange A[i] <-> A[j]
7 exchange A[i + 1] <-> A[r]
8 return i + 1
继而递归完成整个排序过程:
QUICKSORT(A, p, r)
1 if p < r
2 then q ← PARTITION(A, p, r) //关键
3 QUICKSORT(A, p, q - 1)
4 QUICKSORT(A, q + 1, r)
举个例子如下:i 指向数组头部前一个位置,j 指向数组头部元素,j 在前,i 在后,双双从左向右移动。
① j 指向元素2时,i 也指向元素2,2与2互换不变
i p/j
2 8 7 1 3 5 6 4(主元)
② 于是j 继续后移,直到指向了1,1 <= 4,于是i++,i 指向8,故j 所指元素1 与 i 所指元素8 位置互换:
i j
2 1 7 8 3 5 6 4
③ j 继续后移,指到了元素3,3 <= 4,于是同样i++,i 指向7,故j 所指元素3 与 i 所指元素7 位置互换:
i j
2 1 3 8 7 5 6 4
④ j 一路后移,没有再碰到比主元4小的元素:
i j
2 1 3 8 7 5 6 4
⑤ 最后,A[i + 1] <-> A[r],即8与4交换,所以,数组最终变成了如下形式:
2 1 3 4 7 5 6 8
ok,至此快速排序第一趟完成。就这样,4把整个数组分成了俩部分,2 1 3,7 5 6 8,再递归对这俩部分分别进行排序。
全部过程可以参看此文:快速排序算法,或看下我以前在学校里画的图:
而我们面对的问题是,重新排列使得所有球排列成三个不同颜色的球,是否可以设定三个指针,借鉴partition过程呢?
解法一、partition分治
通过前面的分析得知,这个问题,类似快排中partition过程。只是需要用到三个指针,一前begin,一中current,一后end,俩俩交换。
- current遍历,整个数组序列,current指1不动,
- current指0,与begin交换,而后current++,begin++,
- current指2,与end交换,而后,current不动,end--。
为什么,第三步,current指2,与end交换之后,current不动了列,对的,正如algorithm__所说:current之所以与begin交换后,current++、begin++,是因为此无后顾之忧。而current与end交换后,current不动,end--,是因有后顾之忧。
读者可以试想,你最终的目的无非就是为了让0、1、2有序排列,试想,如果第三步,current与end交换之前,万一end之前指的是0,而current交换之后,current此刻指的是0了,此时,current能动么?不能动啊,指的是0,还得与begin交换列。
ok,说这么多,你可能不甚明了,直接引用下gnuhpc的图,就一目了然了:
参考代码如下:
//引用自gnuhpcwhile( current<=end ) { if( array[current] ==0 ) { swap(array[current],array[begin]); current++; begin++; } else if( array[current] == 1 ) { current++; } else //When array[current] =2 { swap(array[current],array[end]); end--; } }
本章完。
第四十二章:矩阵相乘之Strassen算法
题目描述
请编程实现矩阵乘法,并考虑当矩阵规模较大时的优化方法。
思路分析
根据wikipedia上的介绍:两个矩阵的乘法仅当第一个矩阵B的列数和另一个矩阵A的行数相等时才能定义。如A是m×n矩阵和B是n×p矩阵,它们的乘积AB是一个m×p矩阵,它的一个元素其中 1 ≤ i ≤ m, 1 ≤ j ≤ p。
值得一提的是,矩阵乘法满足结合律和分配率,但并不满足交换律,如下图所示的这个例子,两个矩阵交换相乘后,结果变了:
下面咱们来具体解决这个矩阵相乘的问题。
解法一、暴力解法
其实,通过前面的分析,我们已经很明显的看出,两个具有相同维数的矩阵相乘,其复杂度为O(n^3),参考代码如下:
//矩阵乘法,3个for循环搞定 void Mul(int** matrixA, int** matrixB, int** matrixC) { for(int i = 0; i < 2; ++i) { for(int j = 0; j < 2; ++j) { matrixC[i][j] = 0; for(int k = 0; k < 2; ++k) { matrixC[i][j] += matrixA[i][k] * matrixB[k][j]; } } } }
解法二、Strassen算法
在解法一中,我们用了3个for循环搞定矩阵乘法,但当两个矩阵的维度变得很大时,O(n^3)的时间复杂度将会变得很大,于是,我们需要找到一种更优的解法。
一般说来,当数据量一大时,我们往往会把大的数据分割成小的数据,各个分别处理。遵此思路,如果丢给我们一个很大的两个矩阵呢,是否可以考虑分治的方法循序渐进处理各个小矩阵的相乘,因为我们知道一个矩阵是可以分成更多小的矩阵的。
如下图,当给定一个两个二维矩阵A B时:
这两个矩阵A B相乘时,我们发现在相乘的过程中,有8次乘法运算,4次加法运算:
矩阵乘法的复杂度主要就是体现在相乘上,而多一两次的加法并不会让复杂度上升太多。故此,我们思考,是否可以让矩阵乘法的运算过程中乘法的运算次数减少,从而达到降低矩阵乘法的复杂度呢?答案是肯定的。
1969年,德国的一位数学家Strassen证明O(N^3)的解法并不是矩阵乘法的最优算法,他做了一系列工作使得最终的时间复杂度降低到了O(n^2.80)。
他是怎么做到的呢?还是用上文A B两个矩阵相乘的例子,他定义了7个变量:
如此,Strassen算法的流程如下:
- 两个矩阵A B相乘时,将A, B, C分成相等大小的方块矩阵:
;
- 可以看出C是这么得来的:
- 现在定义7个新矩阵(读者可以思考下,这7个新矩阵是如何想到的):
- 而最后的结果矩阵C 可以通过组合上述7个新矩阵得到:
表面上看,Strassen算法仅仅比通用矩阵相乘算法好一点,因为通用矩阵相乘算法时间复杂度是,而Strassen算法复杂度只是
。但随着n的变大,比如当n >> 100时,Strassen算法是比通用矩阵相乘算法变得更有效率。
如下图所示:
解法三、持续优化
根据wikipedia上的介绍,后来,Coppersmith–Winograd 算法把 N* N大小的矩阵乘法的时间复杂度降低到了:,而2010年,Andrew Stothers再度把复杂度降低到了
,一年后的2011年,Virginia Williams把复杂度最终定格为:
参考文献
- 快速排序算法:http://blog.****.net/v_july_v/article/details/6116297;
- 快速排序算法的深入分析:http://blog.****.net/v_july_v/article/details/6211155;
- gnuhpc:http://blog.****.net/gnuhpc/article/details/6207285;
- wikipedia上关于Strassen算法的介绍:http://zh.wikipedia.org/wiki/%E6%96%BD%E7%89%B9%E6%8B%89%E6%A3%AE%E6%BC%94%E7%AE%97%E6%B3%95;
- 第42章部分图来自此文“ Computer Algorithms: Strassen's Matrix Multiplication” :http://www.stoimen.com/blog/2012/11/26/computer-algorithms-strassens-matrix-multiplication/;
- 上文的翻译版,来自图灵社区:http://www.ituring.com.cn/article/17978;
- Coppersmith–Winograd 算法: http://en.wikipedia.org/wiki/Coppersmith%E2%80%93Winograd_algorithm;
后记
编程艺术原计划写到第五十章,如今只剩下最后八章,感谢各位一直以来的关注。预祝本博客所有的读者新春快乐,在马年一切都能心想事成,thanks。
July、二零一四年一月二十八日。
给我老师的人工智能教程打call!http://blog.****.net/jiangjunshow
新的改变
我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:
- 全新的界面设计 ,将会带来全新的写作体验;
- 在创作中心设置你喜爱的代码高亮样式,Markdown 将代码片显示选择的高亮样式 进行展示;
- 增加了 图片拖拽 功能,你可以将本地的图片直接拖拽到编辑区域直接展示;
- 全新的 KaTeX数学公式 语法;
- 增加了支持甘特图的mermaid语法1 功能;
- 增加了 多屏幕编辑 Markdown文章功能;
- 增加了 焦点写作模式、预览模式、简洁写作模式、左右区域同步滚轮设置 等功能,功能按钮位于编辑区域与预览区域中间;
- 增加了 检查列表 功能。
功能快捷键
撤销:Ctrl/Command + Z
重做:Ctrl/Command + Y
加粗:Ctrl/Command + B
斜体:Ctrl/Command + I
标题:Ctrl/Command + Shift + H
无序列表:Ctrl/Command + Shift + U
有序列表:Ctrl/Command + Shift + O
检查列表:Ctrl/Command + Shift + C
插入代码:Ctrl/Command + Shift + K
插入链接:Ctrl/Command + Shift + L
插入图片:Ctrl/Command + Shift + G
合理的创建标题,有助于目录的生成
直接输入1次#,并按下space后,将生成1级标题。
输入2次#,并按下space后,将生成2级标题。
以此类推,我们支持6级标题。有助于使用TOC
语法后生成一个完美的目录。
如何改变文本的样式
强调文本 强调文本
加粗文本 加粗文本
标记文本
删除文本
引用文本
H2O is是液体。
210 运算结果是 1024.
插入链接与图片
链接: link.
图片:
带尺寸的图片:
当然,我们为了让用户更加便捷,我们增加了图片拖拽功能。
如何插入一段漂亮的代码片
去博客设置页面,选择一款你喜欢的代码片高亮样式,下面展示同样高亮的 代码片
.
// An highlighted block var foo = 'bar';
生成一个适合你的列表
- 项目
- 项目
- 项目
- 项目
- 项目1
- 项目2
- 项目3
- 计划任务
- 完成任务
创建一个表格
一个简单的表格是这么创建的:
项目 | Value |
---|---|
电脑 | $1600 |
手机 | $12 |
导管 | $1 |
设定内容居中、居左、居右
使用:---------:
居中
使用:----------
居左
使用----------:
居右
第一列 | 第二列 | 第三列 |
---|---|---|
第一列文本居中 | 第二列文本居右 | 第三列文本居左 |
SmartyPants
SmartyPants将ASCII标点字符转换为“智能”印刷标点HTML实体。例如:
TYPE | ASCII | HTML |
---|---|---|
Single backticks | 'Isn't this fun?' |
‘Isn’t this fun?’ |
Quotes | "Isn't this fun?" |
“Isn’t this fun?” |
Dashes | -- is en-dash, --- is em-dash |
– is en-dash, — is em-dash |
创建一个自定义列表
- Markdown
- Text-to-HTML conversion tool
- Authors
- John
- Luke
如何创建一个注脚
一个具有注脚的文本。2
注释也是必不可少的
Markdown将文本转换为 HTML。
KaTeX数学公式
您可以使用渲染LaTeX数学表达式 KaTeX:
Gamma公式展示 是通过欧拉积分
你可以找到更多关于的信息 LaTeX 数学表达式here.
新的甘特图功能,丰富你的文章
gantt
dateFormat YYYY-MM-DD
title Adding GANTT diagram functionality to mermaid
section 现有任务
已完成 :done, des1, 2014-01-06,2014-01-08
进行中 :active, des2, 2014-01-09, 3d
计划一 : des3, after des2, 5d
计划二 : des4, after des3, 5d
- 关于 甘特图 语法,参考 这儿,
UML 图表
可以使用UML图表进行渲染。 Mermaid. 例如下面产生的一个序列图::
这将产生一个流程图。:
- 关于 Mermaid 语法,参考 这儿,
FLowchart流程图
我们依旧会支持flowchart的流程图:
- 关于 Flowchart流程图 语法,参考 这儿.
导出与导入
导出
如果你想尝试使用此编辑器, 你可以在此篇文章任意编辑。当你完成了一篇文章的写作, 在上方工具栏找到 文章导出 ,生成一个.md文件或者.html文件进行本地保存。
导入
如果你想加载一篇你写过的.md文件或者.html文件,在上方工具栏可以选择导入功能进行对应扩展名的文件导入,
继续你的创作。
-
注脚的解释 ↩︎