任务空间动力学模型:
Hx(q)x¨+Cx(q,q˙)x˙+gx(q)=J−Ta(q)u
Hx(q)=J−Ta(q)H(q)J−1a(q)
Cx(q,q˙)=J−Ta(q)C(q,q˙)J−1a(q)−Hx(q)J˙a(q)J−1a(q)
gx(q)=J−Ta(q)g(q)
一、Regulation位置控制
1.PD control with gravity compensation
u=JTa(q)(−KD(x˙−x˙d)−KP(x−xd))+g(q)
稳态解
S={(e,e˙):e=0,e˙=0}
二、Tracking control轨迹控制
1.Inverse dynamics control

关键:线性化与解耦
目标:x¨=u0
u=JTa(q)(Hx(q)u0+Cx(q,q˙)x˙+gx(q))
u0=xd¨−KD(x˙−xd˙)−KP(x−xd)
e¨+KDe˙+KPe=0
稳态解
S={(e,e˙):e=0,e˙=0}
2.Passivity-based control
ζ˙=J+a(q)ζ˙x
ζ¨=J+a(q)(ζ¨x−J˙a(q)ζ˙)
u=H(q)ζ¨+C(q,q˙)ζ˙+g(q)+JTa(q)KDJa(q)(ζ˙−q˙)