关节空间动力学模型:
H(q)q¨+C(q,q˙)q˙+g(q)=u
一、Regulation位置控制
1.PD control
u=−KPe−KDe˙
H(e+qd)e¨+C(e+qd,e˙)e˙+KDe˙+KPe+g(e+qd)=0
稳态解
S={(e,e˙):KPe+g(e+qd)=0,e˙=0}
稳态误差不为0
2.PID control
u=−KPe−KDe˙−KI∫t0edτ
H(e+qd)e¨+C(e+qd,e˙)e˙+KDe˙+KPe+KI∫t0edτ+g(e+qd)=0
稳态解
S={(e,e˙):e=0,e˙=0}
稳态误差为0,不需要知道外力的准确模型参数
3.PD control with gravity compensation
u=−KPe−KDe˙+g(q)
H(e+qd)e¨+C(e+qd,e˙)e˙+KDe˙+KPe=0
稳态解
S={(e,e˙):e=0,e˙=0}
稳态误差为0,但需要知道外力的准确模型参数
二、Tracking control轨迹控制
1.Inverse dynamics control

关键:线性化与解耦
目标:q¨=u0
u=H(q)u0+C(q,q˙)q˙+g(q)
u0=qd¨−KDe˙−KPe
e¨+KDe˙+KPe=0
稳态解
S={(e,e˙):e=0,e˙=0}
2.Passivity-based control
ζ˙=q˙d−K(⋅)e
K(s)=∑j=0nKjsj
σ=F−1(⋅)e
F−1(s)=sI+K(s)
u=H(q)ζ¨+C(q,q˙)ζ˙+g(q)−KDσ
H(q)σ˙+C(q,q˙)σ+KDσ=0
特别的
K(s)=Λ⇒Lyapunov−basedcontrol
三、Robust control鲁棒控制
当模型的参数在一定范围内波动时,需要使用鲁棒控制
1.Robust inverse dynamics control
u=H0(q)(q¨d−KDe˙−KPe)+C0(q,q˙)q˙+g0(q)+u0
H(q)(e¨+KDe˙+KPe)=Y(q,q˙,qd,qd˙,qd¨)ρ+u0
Y(⋅)ρ=(H0(q)−H(q))(qd¨−KDe˙−KPe)+(C0(q,q˙)−C(q,q˙))q˙+(g0(q)−g(q))
2.Robust passivity-based control
u=H0(q)ζ¨+C0(q,q˙)ζ˙+g0(q)−KDσ+u0
H(q)σ˙+C(q,q˙)σ+KDσ=Y(q,q˙,qd,qd˙,qd¨)ρ+u0
Y(⋅)ρ=(H0(q)−H(q))ζ¨+(C0(q,q˙)−C(q,q˙))ζ˙+(g0(q)−g(q))
四、Adaptive control自适应控制

1.Adaptive gravity compensation
u=−KPe−KDe˙+Yg(q)ρ^g
ρ^˙g=−νYT(q)(γq˙+2e1+2eTe)
2.Adaptive inverse dynamics control
u=H^(q)(q¨d−KDe˙−KPe)+C^(q,q˙)q˙+g^(q)
H^(q)(e¨+KDe˙+KPe)=Y(q,q˙,q¨)ρ
Y(⋅)ρ=(H^(q)−H(q))q¨+(C^(q,q˙)−C(q,q˙))q˙+(g^(q)−g(q))
3.Adaptive passivity-based control
u=H^(q)ζ¨+C^(q,q˙)ζ˙+g^(q)−KDσ
H^(q)σ˙+C^(q,q˙)σ+KDσ=Y(q,q˙,q¨)ρ
Y(⋅)ρ=(H^(q)−H(q))ζ¨+(C^(q,q˙)−C(q,q˙))ζ˙+(g^(q)−g(q))