【数学】一元函数积分学(宇哥笔记)

一元函数积分学

【数学】一元函数积分学(宇哥笔记)

概念与性质

祖孙三代求导后奇偶性互换、周期性不变

[]f(x)T=2f(12)>0,f(x)>0,f(12),f(32),f(0)f(x)=f(x)f(12)=f(12)<0f(x):T=2f(x):T=2f(x)f(32)=f(322)=f(12)=f(12)>0f(x):f(0)=0f(12)<f(0)<f(32) \begin{aligned} \color{maroon}[例]&f(x)二阶可导,T=2,奇函数,且f(\frac12)>0,f'(x)>0,比较f(-\frac12),f'(\frac32),f''(0)的大小\\ &\color{black}\because该函数为奇函数\therefore f(-x)=-f(x)\rightarrow f(-\frac12)=-f(\frac12)<0\\ &\because f(x):T=2 \therefore f'(x):T=2且f'(x)为偶函数\\ &\therefore f'(\frac32)=f'(\frac32-2)=f'(-\frac12)=f'(\frac12)>0\\ &\therefore f''(x)为奇函数\quad 即:f''(0)=0\\ &得f(-\frac12)< f''(0)< f'(\frac32)\\ \end{aligned}

1.前提: 定义域关于原点对称

2.基本类型:
1.f(x)+f(x)ex+ex2;(1+x)23+(1x)232.f(x)f(x)exex2ln1+x1x3.f[ψ(x)][]=sinx2[]=cos(sinx);sinx[]=sin1x;tanx3[]=cosx;cosx[]=ex2;lnx4.ln(x+1+x2)5.6.0f(x)0xf(t)dt7.()f(x),x,y,使f(x+y)=f(x)+f(y)f(x)y=0,f(x)=f(x)+f(0)=f(0)=0y=x,f(0)=f(x)+f(x)f(x)=f(x) \begin{aligned} 1.&f(x)+f(-x)为偶函数,如\frac{e^x+e^{-x}}{2};\sqrt[3]{(1+x)^2}+\sqrt[3]{(1-x)^2}\\ 2.&f(x)-f(-x)为奇函数,如\frac{e^x-e^{-x}}{2};\ln\frac{1+x}{1-x}\\ 3.&f[\psi(x)]为复合函数\\ &奇[偶]=偶:sinx^2\\ &偶[奇]=偶:cos(sinx);\mid sinx\mid\\ &奇[奇]=奇:sin\frac1x;\sqrt[3]{tanx}\\ &偶[偶]=偶:cos\mid x \mid ;\mid cosx \mid\\ &非[偶]=偶:e^{x^2};\ln\mid x\mid\\ 4.&一个特殊函数:\ln(x+\sqrt{1+x^2})为奇函数\\ 5.&求导后奇偶性互换\\ 6.&以0为下限,求积分后奇偶性互换,如f(x)为奇函数,则\int_0^xf(t)dt为偶函数\\ 7.&(题源)f(x)连续,\forall x,y,使f(x+y)=f(x)+f(y)\rightarrow f(x)为奇函数\\ &证明:取y=0,f(x)=f(x)+f(0)=f(0)=0;取y=-x,f(0)=f(x)+f(-x)\rightarrow f(x)=-f(-x) \end{aligned}

 []11ln(x+1+x2)ex2dx=0,411(0xet2dt)x2dx=0,711(x2+1)f(x)dx=0, \begin{aligned} \ [例]&\int_{-1}^1\ln(x+\sqrt{1+x^2})e^{-x^2}dx=0,前者是4的奇函数,后者为偶函数,得奇函数\\ &\int_{-1}^1(\int_0^xe^{-t^2}dt)x^2dx=0,前者为奇函数,后者为偶函数,得奇函数\\ &以7为前置条件,\int_{-1}^1(x^2+1)f(x)dx=0,前者为偶函数,后者为奇函数,得奇函数 \end{aligned}

3.变体类型(平移):
1.f(x)yf(0+x)=f(0x)()f(x)x=Tf(T+x)=f(Tx)[]f(x)+f(x)dx=1,f(1+x)=f(1x),02f(x)dx=0.6,0f(x)dx=0.22.f(x)(0,0)()(x0,0)x3(x1)3[]11x3dx=0;02(x1)3dx=0;04(x2)dx=0 \begin{aligned} &1.f(x)为偶函数\rightarrow 关于y轴对称,即f(0+x)=f(0-x) (平移)得f(x)关于x=T对称,即f(T+x)=f(T-x)\\ &[例]f(x)为正值且连续,\int_{-\infty}^{+\infty}f(x)dx=1,又f(1+x)=f(1-x),且\int_0^2f(x)dx=0.6,则\int_{-\infty}^0f(x)dx=0.2\\ &2.f(x)为奇函数\rightarrow关于(0,0)对称,(平移)\rightarrow关于(x_0,0)对称,如x^3\rightarrow (x-1)^3\\ &[例]\int_{-1}^1x^3dx=0;\int_0^2(x-1)^3dx=0;\int_0^4(x-2)dx=0 \end{aligned}

4.奇偶性

=== \begin{aligned} &偶函数\cdot偶函数=偶函数\qquad奇函数\cdot奇函数=偶函数\qquad奇函数\cdot偶函数=奇函数 \end{aligned}

5.总结

0xf(t)dt    f(x)    f(x)[]f(x)axf(t)dt=a0f(t)dt+0xf(t)dt[]1.f(x)T    0Tf(x)dx=aa+Tf(x)dx,a2.0Tf(x)dx=0,axf(t)dt,f(x),f(x)T3.f(x)T    0nTf(x)dx=n0Tf(x)dx \begin{aligned} &\int_0^x f(t)dt\impliedby f(x)\implies f'(x) 奇偶性互换\\ &\color{grey}{[注]f(x)奇\to\int_a^x f(t)dt=\int_a^0 f(t)dt+\int_0^xf(t)dt}\\ [周期]&1.f(x)T\implies\int_0^Tf(x)dx=\int_a^{a+T}f(x)dx,\forall a\\ &2.若\int_0^Tf(x)dx=0,则\int_a^xf(t)dt,f(x),f'(x)周期都为T\\ &3.f(x)T\implies\int_0^{nT}f(x)dx=n\int_0^Tf(x)dx \end{aligned}

5.例题

 [1]f(x)F(x)=0xf(t)dt:(1)F(x)f(x)(2)f(x)f(x)(1)F(x)=0xf(t)dt,t=u,I=0xf(u)d(u){f(x)    f(u)=f(u)    F(x)=0xf(u)du=F(x)f(x)    f(u)=f(u)    F(x)=0xf(u)du=F(x)(2)f(x)    F(x)=0xf(t)dtaxf(t)dt=a0f(t)dt+0xf(t)dtf(x)    F(x)=0xf(t)dt[2]f(x)T(1)aa+Tf(x)dx=0Tf(x)dx,a(2)0xf(t)dtT    oTf(x)dx=0(3)f(x)dxT    0Tf(x)dx=0(1)aa+T=a0f(x)dx+oTf(x)dx+Ta+Tf(x)dxxT=t,Ta+Tf(x)dx=0af(t+T)dt=0af(t)dt    a0+0a=0aa+Tf(x)dx=0Tf(x)dx,a[]f(x)T(2)F(x)=0xf(t)dt,F(x+T)F(x)=0x+T0x=xx+Tf(t)dtF(x)T    0Tf(t)dt=0(2)(3)    f(x)T0Tf(x)dx=0{0xf(t)dtTaxf(t)dtT[3]f(x)0xt[f(t)+f(t)]dt0xt[f(t)f(t)]dt0xf(t2)dt0xf2(t)dt[4]f(x)Taxf(t)f(t)dtT0Tf(t)f(t)dt=0Tf(t)df(t)dtdt=12f2(t)0T=12[f2(T)f2(0)]=0 \begin{aligned} \ [例1]&\color{maroon}设f(x)连续,F(x)=\int_0^xf(t)dt证明:(1)F(x)的奇偶性与f(x)的奇偶性互换\\ &\color{maroon}(2)若f(x)为奇函数,则一切原函数均为偶函数,若f(x)为偶函数,则只有一个原函数为奇函数\\ (1)&F(-x)=\int_0^{-x}f(t)dt,令t=-u,则I=\int_0^xf(-u)d(-u)\\ &\begin{cases}若f(x)奇函数\implies f(-u)=-f(u)\implies F(-x)=\int_0^xf(u)du=F(x)\\若f(x)偶函数\implies f(-u)=f(u)\implies F(-x)=-\int_0^xf(u)du=-F(x)\end{cases}\\ (2)&f(x)为奇函数\implies F(x)=\int_0^xf(t)dt为偶函数\\ &\int_a^xf(t)dt=\int_a^0f(t)dt+\int_0^xf(t)dt\\ &f(x)为偶函数\implies F(x)=\int_0^xf(t)dt为奇函数,则为非奇函数\\ [例2]&\color{maroon}设f(x)连续,T为周期,证明(1)\int_a^{a+T}f(x)dx=\int_0^Tf(x)dx,\forall a\\ &\color{maroon}(2)\int_0^xf(t)dt以T为周期\iff\int_o^Tf(x)dx=0(3)\int f(x)dx以T为周期\iff\int_0^Tf(x)dx=0\\ (1)&\int_a^{a+T}=\int_a^0f(x)dx+\int_o^Tf(x)dx+\int_T^{a+T}f(x)dx\\ &其中令x-T=t,\int_T^{a+T}f(x)dx=\int_0^af(t+T)dt=\int_0^af(t)dt\implies\int_a^0+\int_0^a=0\\ &故\int_a^{a+T}f(x)dx=\int_0^Tf(x)dx,\forall a\\ [注]&若f(x)以T为周期,则其在一个周期上的积分值与起点无关\\ (2)&F(x)=\int_0^xf(t)dt,F(x+T)-F(x)=\int_0^{x+T}-\int_0^x=\int_x^{x+T}f(t)dt\\ &故F(x)以T为周期\iff\int_0^Tf(t)dt=0\\ &故(2)(3)\implies 若f(x)以T为周期且\int_0^Tf(x)dx=0\\ &\begin{cases}\int_0^xf(t)dt以T为周期\\\int_a^xf(t)dt以T为周期\end{cases}\\ [例3]&\color{maroon}若f(x)连续,则以下函数\\ &\int_0^xt[f(t)+f(-t)]dt为偶函数\\ &\int_0^xt[f(t)-f(-t)]dt为奇函数\\ &\int_0^xf(t^2)dt为奇函数\\ &\int_0^xf^2(t)dt为非负函数\\ [例4]&\color{maroon}设f(x)以T为周期,可导,则\int_a^xf(t)f'(t)dt是否以T为周期?\\ &\int_0^Tf(t)f'(t)dt=\int_0^Tf(t)\frac{df(t)}{dt}dt=\frac12f^2(t)|_0^T=\frac12[f^2(T)-f^2(0)]=0\\ \end{aligned}

积分比大小

{1.2.3.[1]M=π2π2sinx1+x2cos6xdx,N=π2π2(sin3x+cos6x)dx,P=π2π2(x2sin3xcos6x)dx,M,N,PM=0,N=20π2cos6xdx>0,P=20π2cos6xdx<0N>M>P[2]F(x)=xx+2πesintsintdt,F(x)=F(x)=esin(x+2π)sin(x+2π)esinxsinx=0    F(x)=c=F(0)=02πesintsintdt>0F(x)[3]Ik=0kπex2sinxdx(k=1,2,3),:()A.I1<I2<I3B.I3<I2<I1C.I2<I3<I1D.I2<I1<I3I1=0πex2sinxdx,I2=02πex2sinxdx,I3=03πex2sinxdxxex2I1>0,I2<0,I3>I1>0[4]a>0,I1=0π2cosx1+xαdx,I2=0π2sinx1+xαdx,()I1I2=0π211+xα(cosxsinx)dx=0π411+xα(cosxsinx)dx+π4π211+xα(cosxsinx)dx>0()A.I1>I2B.I1<I2C.I1=I2D.α[5]01xsinπ2x1+xdx>01xcosπ2x1+xdxII=01x1+x(sinπ2xcosπ2x)dx=012x1+x(sinπ2xcosπ2x)dx+121x1+x(sinπ2xcosπ2x)dx>0 \begin{aligned} &方法:\begin{cases}1.看出正负\\2.偶倍奇零\\3.作差换元\end{cases}\\ [例1]&\color{maroon}设M=\int_{-\frac{\pi}2}^{\frac{\pi}2}\frac{\sin x}{1+x^2}\cos^6xdx,N=\int_{-\frac{\pi}2}^{\frac{\pi}2}(\sin^3x+\cos^6x)dx,P=\int_{-\frac{\pi}2}^{\frac{\pi}2}(x^2\sin^3x-\cos^6x)dx,\\ &\color{maroon}试比较M,N,P的大小\\ &M=0,N=2\int_0^{\frac{\pi}2}\cos^6xdx>0,P=-2\int_0^{\frac{\pi}2}\cos^6xdx<0\\ &故N>M>P\\ [例2]&\color{maroon}设F(x)=\int_x^{x+2\pi}e^{\sin t}\sin tdt,则F(x)=\underline{\qquad}\\ &F'(x)=e^{\sin(x+2\pi)}\sin(x+2\pi)-e^{\sin x}\sin x=0\\ &\implies F(x)=c=F(0)=\int_0^{2\pi}e^{\sin t}\sin tdt>0\\ &故F(x)为正常数\\ [例3]&\color{maroon}设I_k=\int_0^{k\pi}e^{x^2}\sin xdx(k=1,2,3),则有:(\quad)\\ &\color{maroon}A.I_1<I_2<I_3\quad B.I_3<I_2<I_1\quad C.I_2<I_3<I_1\quad D.I_2<I_1<I_3\\ &I_1=\int_0^\pi e^{x^2}\sin xdx,I_2=\int_0^{2\pi}e^{x^2}\sin xdx,I_3=\int_0^{3\pi}e^{x^2}\sin xdx\\ &画图知该函数随着横坐标x的增大,其因式e^{x^2}也会增大,故其凹或凸的区间会增大\\ &I_1>0,I_2<0,I_3>I_1>0\\ [例4]&\color{maroon}设常数a>0,积分I_1=\int_0^{\frac\pi2}\frac{\cos x}{1+x^\alpha}dx,I_2=\int_0^{\frac\pi2}\frac{\sin x}{1+x^\alpha}dx,则(\quad)\\ &I_1-I_2=\int_0^{\frac\pi2}\frac1{1+x^\alpha}(\cos x-\sin x)dx\\ &=\int_0^{\frac\pi4}\frac1{1+x^\alpha}(\cos x-\sin x)dx+\int_\frac\pi4^\frac\pi2\frac1{1+x^\alpha}(\cos x-\sin x)dx>0(前者大,后者小)\\ &\color{maroon}A.I_1>I_2\quad B.I_1<I_2\quad C.I_1=I_2\quad D.大小与\alpha有关\\ [例5]&\color{maroon}证明\int_0^1\frac{x\cdot \sin\frac\pi2x}{1+x}dx>\int_0^1\frac{x\cdot \cos\frac\pi2x}{1+x}dx\\ &I_左-I_右=\int_0^1\frac{x}{1+x}(\sin\frac\pi2x-\cos\frac\pi2x)dx\\ &=\int_0^{\frac12}\frac{x}{1+x}(\sin\frac\pi2x-\cos\frac\pi2x)dx+\int_\frac12^1\frac x{1+x}(\sin\frac\pi2x-\cos\frac\pi2x)dx>0\\ \end{aligned}

定积分定义

很早人们就发现了一个矩形的面积是底*高,而一个边为曲线的图形呢?

【数学】一元函数积分学(宇哥笔记)

黎曼(1826-1866)发现,将这种图形任意分割成n份,就可以粗略的看到一个个小矩形。

【数学】一元函数积分学(宇哥笔记)

随着分割地越来越多,矩形也就变的越来越细。

【数学】一元函数积分学(宇哥笔记)

一个矩形的面积是可以求得的,那么当这些矩形无限细的时候就可以通过求他们的面积和来得到曲边图形的面积,由于是黎曼最早提出的,定积分也叫做黎曼积分。

【数学】一元函数积分学(宇哥笔记)

1.[a,b]nban2.f(a+bani)limni=1nf(a+bani)ban=abf(x)dx[]1.limxi=1n=limxi=0n12.limxi=1nf(a+bani)ban=abf(x)dx3.limxi=1nf(0+10ni)10n=01f(x)dx4.limxi=1nf(0+x0ni)x0n=0xf(t)dt \begin{aligned} &1.[a,b]n等分,每段长度为\frac{b-a}{n}\\ &2.取右端点的高\rightarrow f(a+\frac{b-a}{n}i)\\ &\color{teal}\therefore \lim_{n\to\infty}\sum_{i=1}^nf(a+\frac{b-a}{n}i)\frac{b-a}{n}=\int_a^bf(x)dx\\ \color{red}{[小结]}&1.\lim_{x\to\infty}\sum_{i=1}^n=\lim_{x\to\infty}\sum_{i=0}^{n-1}(区别是前者取右端点,后者取左端点)\\ &2.\lim_{x\to\infty}\sum_{i=1}^nf(a+\frac{b-a}{n}i)\frac{b-a}{n}=\int_a^bf(x)dx\\ &3.\lim_{x\to\infty}\sum_{i=1}^nf(0+\frac{1-0}{n}i)\frac{1-0}{n}=\int_0^1f(x)dx\\ &4.\lim_{x\to\infty}\sum_{i=1}^nf(0+\frac{x-0}{n}i)\frac{x-0}{n}=\int_0^xf(t)dt\\ &详细题目上一致数列极限部分 \end{aligned}

反常积分判敛

1+1XPdx{P>1P1011XPdx{0<P<1P>1[][1]a,b>0,0+1xa(2020+x)bdx011xa(2020+x)bdx+1+1xa(2020+x)bdx1.x0+    a<12.x+    2020+x+    1+1xa+bdx    a+b>1[2]a>b>0,0+1xa+xbdx,0+1xa+xbdx=011xa+xbdx+1+1xa+xbdx1.x0+,xa+xbxb    011xbdx    b<12.x+,xa+xbxa    1+1xadx    a>1 \begin{aligned} &\int_1^{+\infty}\frac1{X^P}dx\begin{cases}收敛,P>1\\发散,P\leq1\end{cases}\\ &\int_0^1\frac1{X^P}dx\begin{cases}收敛,0<P<1\\发散,P>1\end{cases}\\ [注]&判敛时,每个积分中含且仅含一个奇点\\ [例1]&\color{maroon}a,b>0,\int_0^{+\infty}\frac1{x^a(2020+x)^b}dx收敛,则\underline{\quad}\\ &拆\int_0^1\frac1{x^a(2020+x)^b}dx+\int_1^{+\infty}\frac1{x^a(2020+x)^b}dx\\ &1.x\to0^+\implies a<1\\ &2.x\to+\infty\implies 2020+x\to+\infty\implies\int_1^{+\infty}\frac1{x^{a+b}}dx\implies a+b>1\\ [例2]&\color{maroon}a>b>0,\int_0^{+\infty}\frac1{x^a+x^b}dx收敛,则\underline{\quad}\\ &\int_0^{+\infty}\frac1{x^a+x^b}dx=\int_0^1\frac1{x^a+x^b}dx+\int_1^{+\infty}\frac1{x^a+x^b}dx\\ &1.x\to0^+,x^a+x^b\sim x^b\implies\int_0^1\frac1{x^b}dx\implies b<1\\ &2.x\to+\infty,x^a+x^b\sim x^a\implies \int_1^{+\infty}\frac1{x^a}dx\implies a>1\\ \end{aligned}

计算与应用

基本积分表

xkdx=1k+1xk+1+C,k̸=11x2dx=1x+C1xdx=2x+C1xdx=lnx+Cexdx=ex+Caxdx=1lnaax+C(a>0&a̸=1)sinxdx=cosx+Ccosxdx=sinx+Ctanxdx=lncosx+Ccotxdx=lnsinx+Cdxcosx=secxdx=lnsecx+tanx+Cdxsinx=cscxdx=lncscxcotx+Csec2xdx=tanx+Ccsc2xdx=cotx+Csecxtanxdx=secx+Ccsc2xdx=cotx+C11+x2dx=arctanx+C1a2+x2dx=1aarctanxa+C11x2dx=arcsinx+C1a2x2dx=arcsinxa+C 1x2+a2dx=ln(x+x2+a2)+C1x2a2dx=ln(x+x2a2)+C1x2a2dx=12alnxax+a+C1a2x2dx=12alnx+axa+Ca2x2dx=a22arcsinxa+x2a2x2+C \begin{aligned} &\int x^kdx=\frac1{k+1}x^{k+1}+C,k\not=-1\qquad\int\frac1{x^2}dx=-\frac1x+C\qquad\int\frac1{\sqrt{x}}dx=2\sqrt x+C\\ &\int\frac1xdx=\ln|x|+C\qquad\int e^xdx=e^x+C\qquad\int a^xdx=\frac1{\ln a}a^x+C(a>0 \& a\not=1)\\ &\int \sin xdx=-\cos x+C\qquad\int \cos xdx=\sin x+C\qquad\int \tan xdx=-\ln|\cos x|+C\\ &\int \cot xdx=\ln|\sin x|+C\qquad\int\frac{dx}{\cos x}=\int \sec xdx=\ln|\sec x+\tan x|+C\\ &\int\frac{dx}{\sin x}=\int \csc xdx=\ln|\csc x-\cot x|+C\qquad\int \sec^2xdx=\tan x+C\\ &\int \csc^2xdx=-\cot x+C\qquad\int \sec x\tan xdx=\sec x+C\qquad\int \csc^2xdx=-\cot x+C\\ &\int\frac1{1+x^2}dx=\arctan x+C\qquad\int\frac1{a^2+x^2}dx=\frac1a\arctan\frac xa+C\\ &\int\frac1{1-x^2}dx=\arcsin x+C\qquad\int\frac1{\sqrt{a^2-x^2}}dx=\arcsin\frac xa+C\\ &\ \int\frac1{\sqrt{x^2+a^2}}dx=\ln(x+\sqrt{x^2+a^2})+C\qquad\int\frac1{\sqrt{x^2-a^2}}dx=\ln(x+\sqrt{x^2-a^2})+C\\ &\int\frac1{x^2-a^2}dx=\frac1{2a}\ln|\frac{x-a}{x+a}|+C\qquad\int\frac1{a^2-x^2}dx=\frac1{2a}\ln|\frac{x+a}{x-a}|+C\\ &\int\sqrt{a^2-x^2}dx=\frac{a^2}2\arcsin\frac xa+\frac x2\sqrt{a^2-x^2}+C \end{aligned}

不定积分计算

凑微分法

d()d(xkdx)=d(1k+1xk+1+C)1.dx=1ad(ax+b),a̸=02.xkdx=1k+1d(xk+1),k̸=1̸=0xdx=12dx21x2dx=d(1x)1xdx=2dxxdx=23dx323.1xdx=dlnx,x>04.exdx=dexaxdx=1lnadax5.sinxdx=d(cosx)cosxdx=d(sinx)6.1cos2xdx=sec2xdx=d(tanx)dxsin2x=csc2xdx=d(cotx)7.11+x2dx=d(arctanx)8.11x2dx=d(arcsinx) \begin{aligned} &于两边加d(取微分),即d(\int x^kdx)=d(\frac1{k+1}x^{k+1}+C)\\ 1.&dx=\frac1ad(ax+b),a\not=0\\ 2.&x^kdx=\frac1{k+1}d(x^{k+1}),k\not=1且\not=0\quad xdx=\frac12dx^2\quad \frac1{x^2}dx=d(-\frac1x)\quad\frac1{\sqrt x}dx=2d\sqrt x\quad\sqrt xdx=\frac23dx^{\frac32}\\ 3.&\frac1xdx=d\ln x,x>0\\ 4.&e^xdx=de^x\qquad a^xdx=\frac1{\ln a}da^x\\ 5.&\sin xdx=d(-\cos x)\qquad \cos xdx=d(\sin x)\\ 6.&\frac1{\cos^2x}dx=\sec^2xdx=d(\tan x)\qquad\frac{dx}{\sin^2x}=\csc^2xdx=d(-\cot x)\\ 7.&\frac{1}{1+x^2}dx=d(\arctan x)\\ 8.&\frac1{\sqrt{1-x^2}}dx=d(\arcsin x) \end{aligned}

[1](1+x1x)ex+1xdx=ex+1xdx+x(11x2)ex+1xdx=ex+1xdx+xex+1xd(x+1x)=ex+1xdx+xdex+1x=xex+1x+C \begin{aligned} &[例1]\int(1+x-\frac1x)e^{x+\frac1x}dx=\int e^{x+\frac1x}dx+\int x(1-\frac1{x^2})e^{x+\frac1x}dx=\int e^{x+\frac1x}dx+\int x\cdot e^{x+\frac1x}d(x+\frac1x)\\ &=\int e^{x+\frac1x}dx+\int x\cdot de^{x+\frac1x}=x\cdot e^{x+\frac1x}+C \end{aligned}

分部积分法

[使][]udv=uvvdu[]u,v,u    v[](uv)=uv+uv    (uv)=uv+uv    d(uv)dx=dudxv+dvdxu    d(uv)=vdu+udv[]x22x20exexexexx2exdx=x2dex=x2exex2xdx=x2ex2xdex=x2ex2xex+2exdx=x2+ex2xex+2ex+Cx22x20ex+exex+exx2exdx=x2ex2xex+2ex+C[]uvdx=udv=uvvudxuvdx=udv=uvvudxuvdx=udv=uvvudx    uvdx=uvuv+uvvudxuuuuv+vv+v \begin{aligned} [使用场合]&不同函数类型乘积\\ [公式]&\color{red}{\int udv=uv-\int vdu}\\ [原则]&谁易求导谁做u,谁易积分谁做v,\qquad u\underleftrightarrow{反\ 对\ 幂\ 指\ 三}v\qquad\qquad\quad\\ [证明]&(uv)'=u'v+uv'\implies\int(uv)'=\int u'v+\int uv'\implies\quad\quad\\ &\int\frac{d(uv)}{dx}=\int\frac{du}{dx}v+\int\frac{dv}{dx}u\implies\int d(uv)=\int vdu+\int u\cdot dv\\ [表格法]&\color{blue}多次分部积分时,可用表格法\\ &x^2\to2x\to2\to0\quad e^x\to e^x\to e^x\to e^x\\ &\int x^2e^xdx=\int x^2de^x=x^2e^x-\int e^x\cdot2xdx=x^2e^x-2\int xde^x\\ &=x^2e^x-2xe^x+2\int e^xdx=x^2+e^x-2xe^x+2e^x+C\\ & \begin{array}{c|c|c|c} x^2 & 2x & 2 & 0 \\ \hline e^x & +e^x & -e^x & +e^x \\ \end{array}\\ &\int x^2e^xdx=x^2e^x-2xe^x+2e^x+C\\ [证明]&\int uv'''dx=\int udv''=uv''-\int v''u'dx\\ &\int u'v''dx=\int u'dv'=u'v'-\int v'u''dx\\ &\int u''v'dx=\int u''dv=u''v-\int vu'''dx\\ &\implies \int uv'''dx=uv''-u'v'+u''v-\int vu'''dx\\ & \begin{array}{c|c|c|c} u & u' & u'' & u''' \\ \hline v''' & +v'' & -v' & +v \\ \end{array} \end{aligned}

 [1]xln(x+1+x2)(1+x2)2dx=12ln(x+1+x2)d(x2+1)(x2+1)2=12ln(x+11+x2)d(1x2+1)=12[ln(x+1+x2)x2+11x2+111+x2dx]=12ln(x+1+x2)x2+1+121(1+x2)32dx[2]0+xe3x(1+e3x)2dx=0+xe3x(1+e3x)2dx=130+xd(e3x+1)(1+e3x)2=130+xd11+e3x=13x1+e3x+130+11+e3xdx=13x1+e3x+130+e3xe3x(1+e3x)dx=13x1+e3x+190+de3xe3x(1+e3x)=13x1+e3x0++19lne3x1+e3x0+=(00)+19(0ln12)=19ln2[3]lnxxf(x)1exf(x)dx=(lnxx)=f(x)=1lnxx2f(x)xf(x)dx=xdf(x)=xf(x)f(x)dx()f(x)=(lnxx)=1lnxx2    1exf(x)dx=1exdf(x)=xf(x)1e1ef(x)dx=1lnxx1elnxx1e=(01)(1e0)=11e[4]f(x)=0xet2+2tdt,01(x1)2f(x)dxf(x)=ex2+2x(x1)2f(x)dx=13f(x)d(x1)3=13[(x1)3f(x)(x1)3f(x)dx]()I=1301f(x)d(x1)3=13f(x)(x1)3011301(x1)3f(x)dx=13(00)1301(x1)3ex2+2xdx=1301(x1)2e(x1)2ed(x1)2(x1)2=t,I=e610tetdt=e601tetdt=e6(tetet)01=16(e2)[]{1.2.3. \begin{aligned} \ [例1]&\color{maroon}\int\frac{x\ln(x+\sqrt{1+x^2})}{(1+x^2)^2}dx\\ &=\frac12\int\ln(x+\sqrt{1+x^2})\frac{d(x^2+1)}{(x^2+1)^2}\\ &=\frac12\int\ln(x+1\sqrt{1+x^2})d(-\frac1{x^2+1})\\ &=-\frac12[\frac{ln(x+\sqrt{1+x^2})}{x^2+1}-\int\frac1{x^2+1}\cdot\frac1{\sqrt{1+x^2}}dx]\\ &=-\frac12\cdot\frac{\ln(x+\sqrt{1+x^2})}{x^2+1}+\frac12\int\frac1{(1+x^2)^{\frac32}}dx\\ [例2]&\color{maroon}\int_0^{+\infty}\frac{xe^{-3x}}{(1+e^{-3x})^2}dx\\ &=\int_0^{+\infty}\frac{xe^{3x}}{(1+e^{3x})^2}dx\\ &=\frac13\int_0^{+\infty}x\cdot\frac{d(e^{3x}+1)}{(1+e^{3x})^2}\\ &=-\frac13\int_0^{+\infty}xd\frac1{1+e^{3x}}\\ &=-\frac13\frac{x}{1+e^{3x}}+\frac13\int_0^{+\infty}\frac1{1+e^{3x}}dx\\ &=-\frac13\frac{x}{1+e^{3x}}+\frac13\int_0^{+\infty}\frac{e^{3x}}{e^{3x}(1+e^{3x})}dx\\ &=-\frac13\frac{x}{1+e^{3x}}+\frac19\int_0^{+\infty}\frac{de^{3x}}{e^{3x}(1+e^{3x})}\\ &=-\frac13\frac{x}{1+e^{3x}}|_0^{+\infty}+\frac19\ln\frac{e^{3x}}{1+e^{3x}}|_0^{+\infty}\\ &=(0-0)+\frac19(0-\ln\frac12)=\frac19\ln2\\ [例3]&\color{maroon}设\frac{\ln x}x是f(x)的一个原函数,则\int_1^exf'(x)dx=\\ &(\frac{\ln x}x)'=f(x)=\frac{1-\ln x}{x^2}\\ &已知f(x)的表达式\int xf'(x)dx=\int xdf(x)=xf(x)-\int f(x)dx(降阶题)\\ &\therefore f(x)=(\frac{\ln x}x)'=\frac{1-\ln x}{x^2}\implies \int_1^{e}xf'(x)dx=\int_1^exdf(x)\\ &=xf(x)|_1^e-\int_1^ef(x)dx=\frac{1-\ln x}x|_1^e-\frac{\ln x}x|_1^e\\ &=(0-1)-(\frac1e-0)=-1-\frac1e\\ [例4]&\color{maroon}设f(x)=\int_0^xe^{-t^2+2t}dt,求\int_0^1(x-1)^2f(x)dx\\ &f'(x)=e^{-x^2+2x}\\ &\int(x-1)^2f(x)dx=\frac13\int f(x)d(x-1)^3=\frac13[(x-1)^3f(x)-\int(x-1)^3f'(x)dx](升阶题)\\ &I=\frac13\int_0^1f(x)d(x-1)^3=\frac13f(x)\cdot(x-1)^3|_0^1-\frac13\int_0^1(x-1)^3f'(x)dx\\ &=\frac13(0-0)-\frac13\int_0^1(x-1)^3e^{-x^2+2x}dx\\ &=-\frac13\int_0^1(x-1)^2e^{-(x-1)^2}ed(x-1)^2\\ &令(x-1)^2=t,I=-\frac e6\int_1^0te^{-t}dt\\ &=\frac e6\int_0^1te^{-t}dt=\frac e6(-te^{-t}-e^{-t})|_0^1=\frac16(e-2)\\ [总结]&\color{blue}\begin{cases}1.反对幂指三\\2.表格法\\3.升阶、降阶题\end{cases} \end{aligned}

换元法

1.a2x2    x=asint2.a2+x2    x=atant3.x2a2    x=asect4.ax2+bx+c    {k2ψ2(x)k2+ψ2(x)ψ2(x)k25.ax+bn=tax+bcx+d=taebx+e=t}=t()ax+bn1,ax+bn2,ax+bn=t,n6.1xn,n2    1x=t7.ax,ex,arcsinx,arctanx,lnx=t[]Pn(x)axdx, \begin{aligned} &1.\sqrt{a^2-x^2}\implies x=a\sin t\quad2.\sqrt{a^2+x^2}\implies x=a\tan t\quad3.\sqrt{x^2-a^2}\implies x=a\sec t\\ &4.\sqrt{ax^2+bx+c}\implies\begin{cases}\sqrt{k^2-\psi^2(x)}\\\sqrt{k^2+\psi^2(x)}\\\sqrt{\psi^2(x)-k^2}\end{cases}\\ &5.\left.\begin{array}{l}\sqrt[n]{ax+b}=t\\\sqrt{\frac{ax+b}{cx+d}}=t\\\sqrt{ae^{bx}+e}=t \end{array}\right\}\sqrt{*}=t(根式代换)\sqrt[n_1]{ax+b},\sqrt[n_2]{ax+b},令\sqrt[n]{ax+b}=t,n为以上的公倍数\\ &6.倒代换\frac1{x^n},n\geq2\implies\frac1x=t\quad7.a^x,e^x,\arcsin x,\arctan x,\ln x=t\\ [注]&\int P_n(x)\cdot a^xdx,优先分部积分法\\ \end{aligned}

 [1]01arcsinx3dxarcsinx3=t    sin(arcsinx3)=sint    x=sin3t    I=0π2tdsin3t=tsin3t0π20π2sin3tdt=π20π2sin3tdt=π223[]0π2sinnxdx=0π2cosnxdx={n1nn3n212π2,nn1n23,n1[2]y=x4xx2[0,4]yVy=042πx24xx2dx=2π04x2(4x)xdxx=4sin2t,I=2π0π216sin4t4sintcost4(2sintcost)dt=210π0π2sin6t(1sin2t)dt=210π[(563412π2)(78563412π2)]=20π2[]x=a+bt,abf(x)dx=baf(a+bt)(dt)=abf(a+bt)dtabf(x)dx=abf(a+bx)dx[3]π4π42x12x+1cos42xdxI=12π4π42x2x+1cos42xdx,x=t:12π4π412t+1cos42tdt    2I=12π4π42x+12x+1cos42xdx,2x=u12π2π4cos4udu2=120π2cos4uduI=140π2cos4udu=143412π2=364π[4]02[(x1)3+2x]1cos2πxdxx1=t,11(t3+2t+2)1cos2πtdt=4011cos2πtdt=4201sinπtdt=42(1πcosπt)01=42(1π+1π)=82π \begin{aligned} \ [例1]&\color{maroon}\int_0^1\arcsin\sqrt[3]{x}dx\\ &令\arcsin\sqrt[3]{x}=t\implies\sin(\arcsin\sqrt[3]{x})=\sin t\\ &\implies x=\sin^3t\implies I=\int_0^{\frac\pi2}td\sin^3t=t\sin^3t|_0^{\frac\pi2}-\int_0^{\frac\pi2}\sin^3tdt\\ &=\frac{\pi}2-\int_0^{\frac{\pi}2}\sin^3tdt=\frac\pi2-\frac23\\ [注]&\color{red}华里士公式,点火公式\\ &\int_0^{\frac{\pi}2}\sin^nxdx=\int_0^{\frac{\pi}2}\cos^nxdx=\begin{cases}\frac{n-1}n\cdot\frac{n-3}{n-2}\cdots\frac12\frac{\pi}2,n为正偶数\\\frac{n-1}n\cdots\frac23,n为大于1的奇数\end{cases}\\ [例2]&\color{maroon}求y=x\cdot\sqrt{4x-x^2}在[0,4]上的图形绕y轴的体积\\ &V_y=\int_0^42\pi x^2\sqrt{4x-x^2}dx=2\pi\int_0^4x^2\sqrt{(4-x)x}dx\\ &令x=4\sin^2t,I=2\pi\int_0^\frac\pi2 16\sin^4t\cdot4\sin t\cdot \cos t\cdot4(2\sin t\cos t)dt\\ &=2^{10}\pi\int_0^\frac\pi2 \sin^6t(1-\sin^2t)dt=2^{10}\pi[(\frac56\cdot\frac34\cdot\frac12\cdot\frac\pi2)-(\frac78\cdot\frac56\cdot\frac34\cdot\frac12\cdot\frac\pi2)]=20\pi^2\\ [注]&\color{red}区间再现公式\\ &令x=a+b-t,则\int_a^bf(x)dx=\int_b^af(a+b-t)(-dt)=\int_a^bf(a+b-t)dt\\ &故\int_a^bf(x)dx=\int_a^bf(a+b-x)dx\\ [例3]&\color{maroon}\int_{-\frac{\pi}4}^{\frac\pi4}\frac{2^{x-1}}{2^x+1}\cos^42xdx\\ &I=\frac12\int_{-\frac{\pi}4}^{\frac\pi4}\frac{2^x}{2^x+1}\cos^42xdx,令x=-t,得:\\ &\frac12\int_{-\frac{\pi}4}^{\frac\pi4}\frac1{2^t+1}\cos^42tdt\implies2I=\frac12\int_{-\frac{\pi}4}^{\frac\pi4}\frac{2^x+1}{2^x+1}\cos^42xdx,令2x=u,得\\ &\frac12\int_{-\frac{\pi}2}^{\frac\pi4}\cos^4u\frac{du}{2}=\frac12\int_0^{\frac\pi2}\cos^4udu\\ &I=\frac14\int_0^{\frac\pi2}\cos^4udu=\frac14\frac34\frac12\frac\pi2=\frac3{64}\pi\\ [例4]&\color{maroon}\int_0^2[(x-1)^3+2x]\sqrt{1-\cos2\pi x}dx\\ &令x-1=t,得\int_{-1}^1(t^3+2t+2)\sqrt{1-\cos2\pi t}dt=4\int_0^1\sqrt{1-\cos2\pi t}dt\\ &=4\sqrt2\int_0^1\sin\pi tdt=4\sqrt2(-\frac1{\pi}\cos\pi t)|_0^1=4\sqrt2(\frac1\pi+\frac1\pi)=\frac{8\sqrt2}{\pi}\\ \end{aligned}

有理函数积分

1.Pn(x)Qm(x)dx(n<m)2.Qm(x)Pn(x)(ax+b)k=A1ax+b+A2(ax+b)2++Ak(ax+b)kPn(x)(px2+qx+r)k=A1x+B1px2+qx+r+A2x+B2(px2+qx+r)2++Akx+Bk(px2+qx+r)k \begin{aligned} 1.&有理函数:\int\frac{P_n(x)}{Q_m(x)}dx(n< m)\\ 2.&对Q_m(x)进行因式分解\\ &\frac{P_n(x)}{(ax+b)^k}=\frac{A_1}{ax+b}+\frac{A_2}{(ax+b)^2}+\cdots+\frac{A_k}{(ax+b)^k}\\ &\frac{P_n(x)}{(px^2+qx+r)^k}=\frac{A_1x+B_1}{px^2+qx+r}+\frac{A_2x+B_2}{(px^2+qx+r)^2}+\cdots+\frac{A_kx+B_k}{(px^2+qx+r)^k} \end{aligned}

 [1]4x26x1(x+1)(2x1)2dx4x26x1(x+1)(2x1)2=Ax+1+B(2x1)1+C(2x1)2    4x26x1A(2x1)2+B(2x1)(x+1)+C(x+1)x=1    4+61=9A    A=1x=12    131=C32    C=2x=0    1=1B2    B=0I=1x+1dx21(2x1)2dx=lnx+1+12x1+C[2]1+dxx2(x+1)1x2(x+1)=Ax+1+Bx+Cx2    1Ax2+(Bx+C)(x+1){x=0 1=cx=1 1=Ax2 0=A+B    B=1    1+1x2(x+1)dx=1+(1x+1+1xx2)dx=1+(1x+1+1x21x)dx=1+(1x+11x)dx+1+1x2dx=lnx+1x1++(1x1+)=1ln2 \begin{aligned} \ [例1]&\color{maroon}{求\int\frac{4x^2-6x-1}{(x+1)(2x-1)^2}dx}\\ &\frac{4x^2-6x-1}{(x+1)(2x-1)^2}=\frac{A}{x+1}+\frac B{(2x-1)^1}+\frac C{(2x-1)^2}\\ &\implies 4x^2-6x-1\equiv A(2x-1)^2+B(2x-1)(x+1)+C(x+1)\\ &令x=-1\implies4+6-1=9A\implies A=1\\ &令x=\frac12\implies1-3-1=C\cdot\frac32\implies C=-2\\ &令x=0\implies-1=1-B-2\implies B=0\\ &I=\int\frac1{x+1}dx-2\int\frac1{(2x-1)^2}dx=\ln|x+1|+\frac1{2x-1}+C\\ [例2]&\color{maroon}\int_1^{+\infty}\frac{dx}{x^2(x+1)}\\ &\frac1{x^2(x+1)}=\frac{A}{x+1}+\frac{Bx+C}{x^2}\implies 1\equiv Ax^2+(Bx+C)(x+1)\\ &\begin{cases}令x=0\ 1=c\\令x=-1\ 1=A\\x^2前系数\ 0=A+B\implies B=-1\end{cases}\\ &\implies\int_1^{+\infty}\frac1{x^2(x+1)}dx=\int_1^{+\infty}(\frac1{x+1}+\frac{1-x}{x^2})dx=\int_1^{+\infty}(\frac1{x+1}+\frac1{x^2}-\frac1x)dx\\ &=\int_1^{+\infty}(\frac1{x+1}-\frac1x)dx+\int_1^{+\infty}\frac1{x^2}dx=\ln\frac{x+1}x|_1^{+\infty}+(-\frac1x|_1^{+\infty})=1-\ln2\\ \end{aligned}

变现积分计算

直接求导型

 [1]f(x)>0,axf(t)dt+bx1f(t)dt=0,(a,b)F(x)=axf(t)dt+bx1f(t)dtF(x)=f(x)+1f(x)>0    F(x)F(a)=ba1f(t)dt=ab1f(t)dt<0,F(b)=abf(t)dt>0[2]f(x)F(x)=1xlnxf(t)dt,F(x)=F(x)=f(lnx)1xf(1x)(1x2)[3]limx00xsin2t4+t20x(t+11)dtdtI=limx00xsin2t4+t2dt0x(t+11)dt=limx0sin2x4+x2x+11=12limx0sin2x1+x1=2[4]limx00x[0u2arctan(1+t)dt]dux(1cosx)φ(u)=0u2arctan(1+t)dtI=limx00xφ(u)dux12x2=limx0φ(x)32x2limx00x2arctan(1+t)dt32x2limx0arctan(1+x2)2x3x=π6 \begin{aligned} \ [例1]&\color{maroon}f(x)连续且>0,则方程\int_a^xf(t)dt+\int_b^x\frac1{f(t)}dt=0,在(a,b)内有\underline{\quad}个根\\ &令F(x)=\int_a^xf(t)dt+\int_b^x\frac1{f(t)}dt\\ &则F'(x)=f(x)+\frac1{f(x)}>0\implies F(x)单调递增\\ &F(a)=\int_b^a\frac1{f(t)}dt=-\int_a^b\frac1{f(t)}dt<0,F(b)=\int_a^bf(t)dt>0\\ &即有一个根\\ [例2]&\color{maroon}设f(x)为连续函数,且F(x)=\int_{\frac1x}^{\ln x}f(t)dt,则F(x)=\\ &F'(x)=f(\ln x)\cdot\frac1x-f(\frac1x)(\frac{-1}{x^2})\\ [例3]&\color{maroon}\lim_{x\to0}\int_0^x\frac{\sin2t}{\sqrt{4+t^2}\int_0^x(\sqrt{t+1}-1)dt}dt\\ &I=\lim_{x\to0}\frac{\int_0^x\frac{\sin2t}{\sqrt{4+t^2}}dt}{\int_0^x(\sqrt{t+1}-1)dt}=\lim_{x\to0}\frac{\frac{\sin2x}{\sqrt{4+x^2}}}{\sqrt{x+1}-1}\\ &=\frac12\lim_{x\to0}\frac{\sin2x}{\sqrt{1+x}-1}=2\\ [例4]&\color{maroon}\lim_{x\to0}\frac{\int_0^x[\int_0^{{u}^2}\arctan(1+t)dt]du}{x(1-\cos x)}\\ &令\varphi(u)=\int_0^{u^2}\arctan(1+t)dt\\ &则I=\lim_{x\to0}\frac{\int_0^x\varphi(u)du}{x\cdot\frac12x^2}=\lim_{x\to0}\frac{\varphi(x)}{\frac32x^2}\\ &\lim_{x\to0}\frac{\int_0^{x^2}\arctan(1+t)dt}{\frac32x^2}\\ &\lim_{x\to0}\frac{\arctan(1+x^2)\cdot2x}{3x}=\frac\pi6 \end{aligned}

拆分求导型

φ(x)[a,b]φ(x)>0,y=abxtφ(t)dt,()A.(a,b)B.(a,b)C.(a,b)D.(a,b)y=abxtφ(t)dt=ax(xt)φ(t)dt+xb(tx)φ(t)dt=axxφ(t)dtaxtφ(t)dt+xbtφ(t)dtxbxφ(t)dt=xaxφ(t)dtaxtφ(t)dt+xbtφ(t)dtxxbφ(t)dt    y=axφ(t)dt+xφ(x)xφ(x)xφ(x)xbφ(t)dt+xφ(x)=axφ(t)dtxbφ(t)dt    y=φ(x)+φ(x)=2φ(x)>0,B \begin{aligned} &\color{maroon}设\varphi(x)在[a,b]上连续,且\varphi(x)>0,则函数y=\int_a^b|x-t|\varphi(t)dt,则()\\ &\color{maroon}A.在(a,b)内为凸\quad B.在(a,b)内为凹 \quad C.在(a,b)内有拐点\quad D.在(a,b)内有间断点\\ y&=\int_a^b|x-t|\varphi(t)dt\\ &=\int_a^x(x-t)\varphi(t)dt+\int_x^b(t-x)\varphi(t)dt\\ &=\int_a^xx\varphi(t)dt-\int_a^xt\cdot\varphi(t)dt+\int_x^bt\varphi(t)dt-\int_x^bx\varphi(t)dt\\ &=x\int_a^x\varphi(t)dt-\int_a^xt\varphi(t)dt+\int_x^bt\varphi(t)dt-x\int_x^b\varphi(t)dt\\ &\implies y'=\int_a^x\varphi(t)dt+x\varphi(x)-x\varphi(x)-x\varphi(x)-\int_x^b\varphi(t)dt+x\varphi(x)\\ &=\int_a^x\varphi(t)dt-\int_x^b\varphi(t)dt\implies y''=\varphi(x)+\varphi(x)=2\varphi(x)>0,故选B \end{aligned}

换元求导型

f(x)[0,+)f(0)=0,g(x),xx+f(x)g(tx)dt=x2ln(1+x),f(x)xx+f(x)g(tx)dtu=tx0f(x)g(u)du    0f(x)g(u)du=x2ln(1+x)    g(f(x))f(x)=2xln(1+x)+x21+x    xf(x)=2xln(1+x)+x21+x    f(x)=2ln(1+x)+x1+x    f(x)=2ln(1+x)dx+x1+xdx=2(x+1)ln(1+x)2(x+1)11+xdx=2(x+1)ln(1+x)2x+xln(1+x)+cf(0)=0,c=0f(x)=(2x+1)ln(1+x)x \begin{aligned} &\color{maroon}设f(x)在[0,+\infty)上可导,f(0)=0,其反函数为g(x),若\int_x^{x+f(x)}g(t-x)dt=x^2\ln(1+x),求f(x)\\ &\int_x^{x+f(x)}g(t-x)dt\underrightarrow{令u=t-x}\int_0^{f(x)}g(u)du\\ &\implies \int_0^{f(x)}g(u)du=x^2\ln(1+x)\implies g(f(x))\cdot f'(x)=2x\ln(1+x)+\frac{x^2}{1+x}\\ &\implies x\cdot f'(x)=2x\ln(1+x)+\frac{x^2}{1+x}\\ &\implies f'(x)=2\ln(1+x)+\frac{x}{1+x}\\ &\implies f(x)=2\int\ln(1+x)dx+\int\frac{x}{1+x}dx\\ &=2(x+1)\ln(1+x)-2\int(x+1)\cdot\frac1{1+x}dx\\ &=2(x+1)\ln(1+x)-2x+x-\ln(1+x)+c\\ &又f(0)=0,故c=0\\ &则f(x)=(2x+1)\ln(1+x)-x \end{aligned}

应用

:S=ab1dx:Vx=abπ2dxVy=ab2πx1dy \begin{aligned} 面积:&\color{blue}{S=\int_a^b\circ^1dx}\\ 体积:&\color{blue}{V_x=\int_a^b\pi\circ^2dx}\\ &\color{blue}{V_y=\int_a^b2\pi\cdot x\circ^1dy} \end{aligned}