MIT_单变量微积分_18

1.微积分第二基本定理

均值定理:
ΔF=F(b)F(a),Δx=baΔF=abf(x)dx(FTC1)ΔFΔx=1baabf(x)dx,fΔF=Avg(F)Δx(maxF)Δx(minF)ΔxΔF=F(c)Δx(MVT)(maxF)Δx\Delta F=F(b)-F(a),\Delta x = b- a\\ \Delta F= \int_a^bf(x)dx(FTC1)\\ \frac{\Delta F}{\Delta x}=\frac{1}{b-a}\int_a^bf(x)dx,相等于将f平分。\\ \Delta F=Avg(F')\cdot\Delta x \leq(maxF')\Delta x\\ (minF')\Delta x \leq \Delta F=F'(c)\Delta x(MVT) \leq (maxF')\Delta x

Ex:F(x)=1x+1,F(0)=1F'(x)=\frac{1}{x+1},F(0)=1,由均值定理推断可知:A<F(4)<BA<F(4)<B,ABA和B分别等于多少?
F(4)F(0)=F(C)(40)=1c+1411+4=451c+144=11+0495F(4)5F(4)-F(0)=F'(C)*(4-0)=\frac{1}{c+1} \cdot 4\\ \frac{1}{1+4}=\frac{4}{5} \leq \frac{1}{c+1} \cdot 4 \leq 4= \frac{1}{1+0} \cdot 4\\ \frac{9}{5} \leq F(4) \leq5

  • 解释-FTC1:
    F(4)F(0)=0411+xdx<04dx=4F(4)-F(0)=\int_0^4\frac{1}{1+x}dx <\int_0^4dx=4
    F(4)F(0)=0411+xdx>0415dx=45F(4)-F(0)=\int_0^4\frac{1}{1+x}dx > \int_0^4\frac{1}{5}dx=\frac{4}{5}
    几何意义:<<下黎曼和<黎曼和<上黎曼和
    MIT_单变量微积分_18
    FTC2:已知函数ff是连续的,G(x)=axf(t)dt(atx),G(x)=f(x),G(x)G(x)=\int _a^xf(t)dt(a\leq t \leq x),G'(x)=f(x),G(x)可解出方程
    {y=fy(a)=0\left\{\begin{matrix} y'=f& \\ y(a)=0& \end{matrix}\right.
    Ex:ddx1xdtt2=1x2\frac{d}{dx}\int_1^x\frac{dt}{t^2}=\frac{1}{x^2}
    MIT_单变量微积分_18
    ΔGΔxf(x)\Delta G\approx \Delta xf(x)
    limΔx0ΔGΔx=f(x)\lim_{\Delta x\to 0}{\frac{\Delta G}{\Delta x}}=f(x)

FTC1 证明:
F=f,fG(x)=axf(t)dtFTC2G(x)=f(x)F(x)=G(x)F(x)=G(x)+CF(b)F(a)=(G(b)+C)(G(a)+C)=G(b)G(a)=abf(x)dx0F'=f,假设f连续\\ G(x)=\int_a^xf(t)dt\\ 由FTC2 \Rightarrow G'(x)=f(x)\\ F'(x)=G'(x) \Rightarrow F(x)=G(x) +C\\ F(b)-F(a)=(G(b)+C)-(G(a)+C)\\ =G(b)-G(a)\\ =\int_a^bf(x)dx-0

Ex:L(x)=1x,L(1)=0,L(x)=1xdttL'(x)=\frac{1}{x},L(1)=0,L(x)=\int_1^x\frac{dt}{t}

Ex:
新函数:y=ex2,y(0)=0,F(x)=0xet2dty'=e^{-x^2},y(0)=0,F(x)=\int_0^xe^{-t^2}dt
如图所示:时钟函数。y=ex2y=e^{-x^2}
MIT_单变量微积分_18