MIT线性代数笔记-第七讲

computing the null space

A=[1222246836810]>[122200240024]>[122200240000]=U

注意到,A有两个pivot

rank

rank of A = counts of pivot

第一列和第三列含有pivot的列被称为pivot column,而没有pivot的列被称为free column.Free column means I can assign any number freely to the variable(在A为X2和X4)

由于X2,X4可以取任意值,那么我们先将X2设为1,X4设为0,则X为:
[2100]

注意到,我们可以将X乘以任意系数,结果仍是AX = 0的解,即:

c[2100]

我们还可以将x4 = 1, x2 = 0,得到
[2021]

这两个X被称作AX = 0的spectial solutions,AX = 0的解为spection solutions的线性组合,即
c1[2100]+c1[2021]

AX = 0有多少个spectial solution?
为free variable的数量,即n - rank.

remember,when I do the elimination,the null space of A don’t change

R = reduced row echelon form

U=[122200240000]

对U再做些变换,之前我们做elimination一直都是downwards,也就是向下,现在我们试试upwards,向上消元,也就是说,R矩阵,在pivot上下的值都为0
U=[122200240000]>[120200240000]

我们还可以再多做一步
[120200240000]>[120200120000]=R=rref(A)(matlabR)

R能带给我们哪些信息?
pivot row and pivot columns are one and three,notice I is in the pivot rows and columns
[1001]

之前我们用将AX = 0转换为UX = 0来解X,现在我们可以用RX = 0来解X

对比一下之前解得的AX = 0的两个特殊解与I 和 free columns:
c1[2100]+c1[2021]

I=[1001]andF=[2202]
注意到spectial solution中的值即为I和F(多了个负号)的组合

rref form

[IF00]

RX = 0,RN = 0
Null Space matrix(columns are the spectial solutions)

N=[FI]
MIT线性代数笔记-第七讲
MIT线性代数笔记-第七讲