机器学习吴恩达第十周

17、大规模机器学习

17.1大型数据集学习

首先应该做的事是去检查一个这么大规模的训练集是否真的必要,也许我们只用 1000个训练集也能获得较好的效果,我们可以绘制学习曲线来帮助判断。
机器学习吴恩达第十周

17.2随机梯度下降算法

如果我们一定需要一个大规模的训练集,我们可以尝试使用随机梯度下降法(SGD)来代替批量梯度下降法。
在随机梯度下降法中,我们定义代价函数为一个单一训练实例的代价:
机器学习吴恩达第十周
随机梯度下降算法为:首先对训练集随机“洗牌”,然后:
机器学习吴恩达第十周
随机梯度下降算法在每一次计算之后便更新参数 ???? ,而不需要首先将所有的训练集求和,在梯度下降算法还没有完成一次迭代时,随机梯度下降算法便已经走出了很远。但是这样的算法存在的问题是,不是每一步都是朝着”正确”的方向迈出的。因此算法虽然会逐渐走向全局最小值的位置,但是可能无法站到那个最小值的那一点,而是在最小值点附近徘徊。

17.3小批量梯度下降

小批量梯度下降算法是介于批量梯度下降算法和随机梯度下降算法之间的算法,每计算常数????次训练实例,便更新一次参数 ???? 。
机器学习吴恩达第十周

17.4随机梯度下降收敛

现在我们介绍随机梯度下降算法的调试,以及学习率 ???? 的选取。
在批量梯度下降中,我们可以令代价函数????为迭代次数的函数,绘制图表,根据图表来判断梯度下降是否收敛。但是,在大规模的训练集的情况下,这是不现实的,因为计算代价太大了。
在随机梯度下降中,我们在每一次更新 ???? 之前都计算一次代价,然后每????次迭代后,求出这????次对训练实例计算代价的平均值,然后绘制这些平均值与????次迭代的次数之间的函数图表。
机器学习吴恩达第十周
当我们绘制这样的图表时,可能会得到一个颠簸不平但是不会明显减少的函数图像(如上面左下图中蓝线所示)。我们可以增加????来使得函数更加平缓,也许便能看出下降的趋势了(如上面左下图中红线所示);或者可能函数图表仍然是颠簸不平且不下降的(如洋红色线所示),那么我们的模型本身可能存在一些错误。
如果我们得到的曲线如上面右下方所示,不断地上升,那么我们可能会需要选择一个较小的学习率????。

总结下,这段视频中,我们介绍了一种方法,近似地监测出随机梯度下降算法在最优化代价函数中的表现,这种方法不需要定时地扫描整个训练集,来算出整个样本集的代价函数,而是只需要每次对最后 1000 个,或者多少个样本,求一下平均值。应用这种方法,你既可以保证随机梯度下降法正在正常运转和收敛,也可以用它来调整学习速率????的大小。

17.5在线学习

你能做的是使用一个在线学习机制,从数据流中学习用户的偏好,然后使用这些信息来优化一些关于网站的决策。

一个算法来从中学习的时候来模型化问题在线学习算法指的是对数据流而非离线的静态数据集的学习。许多在线网站都有持续不断的用户流,对于每一个用户,网站希望能在不将数据存储到数据库中便顺利地进行算法学习。

一旦对一个数据的学习完成了,我们便可以丢弃该数据,不需要再存储它了。

我们所使用的这个算法与随机梯度下降算法非常类似,唯一的区别的是,我们不会使用一个固定的数据集,我们会做的是获取一个用户样本,从那个样本中学习,然后丢弃那个样本并继续下去,而且如果你对某一种应用有一个连续的数据流,这样的算法可能会非常值得考虑。

17.6映射化简和数据并行

用批量梯度下降算法来求解大规模数据集的最优解,我们需要对整个训练集进行循环,计算偏导数和代价,再求和,计算代价非常大。如果我们能够将我们的数据集分配给不多台计算机,让每一台计算机处理数据集的一个子集,然后我们将计所的结果汇总在求和。这样的方法叫做映射简化。

我们有 400 个训练实例,我们可以将批量梯度下降的求和任务分配给 4 台计算机进行处理:
机器学习吴恩达第十周

18、应用实例:图片文字识别

18.1问题描述和流程图

为了完成这样的工作,需要采取如下步骤:
1.文字侦测(Text detection)——将图片上的文字与其他环境对象分离开来
2.字符切分(Character segmentation)——将文字分割成一个个单一的字符
3.字符分类(Character classification)——确定每一个字符是什么 可以用任务流程图来

18.2滑动窗口

滑动窗口是一项用来从图像中抽取对象的技术。假使我们需要在一张图片中识别行人,首先要做的是用许多固定尺寸的图片来训练一个能够准确识别行人的模型。然后我们用之前训练识别行人的模型时所采用的图片尺寸在我们要进行行人识别的图片上进行剪裁,然后将剪裁得到的切片交给模型,让模型判断是否为行人,然后在图片上滑动剪裁区域重新进行剪裁,将新剪裁的切片也交给模型进行判断,如此循环直至将图片全部检测完。一旦完成后,我们按比例放大剪裁的区域,再以新的尺寸对图片进行剪裁,将新剪裁的切片按比例缩小至模型所采纳的尺寸,交给模型进行判断,如此循环。

滑动窗口技术也被用于文字识别,首先训练模型能够区分字符与非字符,然后,运用滑动窗口技术识别字符,一旦完成了字符的识别,我们将识别得出的区域进行一些扩展,然后将重叠的区域进行合并。接着我们以宽高比作为过滤条件,过滤掉高度比宽度更大的区域(认为单词的长度通常比高度要大)。下图中绿色的区域是经过这些步骤后被认为是文字的区域,而红色的区域是被忽略的。

下一步是训练一个模型来完成将文字分割成一个个字符的任务,需要的训练集由单个字符的图片和两个相连字符之间的图片来训练模型。

模型训练完后,我们仍然是使用滑动窗口技术来进行字符识别。 最后一个阶段是字符分类阶段,利用神经网络、支持向量机或者逻辑回归算法训练一个分类器即可。

18.3获取大量数据和人工数据

数据不总是可以直接获得的,我们有可能需要人工地创造一些数据。
以我们的文字识别应用为例,我们可以字体网站下载各种字体,然后利用这些不同的字体配上各种不同的随机背景图片创造出一些用于训练的实例,这让我们能够获得一个无限大的训练集。这是从零开始创造实例。

另一种方法是,利用已有的数据,然后对其进行修改,例如将已有的字符图片进行一些扭曲、旋转、模糊处理。

有关获得更多数据的几种方法:
1.人工数据合成
2.手动收集、标记数据
3.众包

18.4上限分析:那部分管道的接下去做

如果我们令文字侦测部分输出的结果 100%正确,发现系统的总体效果从 72%提高到了89%。这意味着我们很可能会希望投入时间精力来提高我们的文字侦测部分。
接着我们手动选择数据,让字符切分输出的结果 100%正确,发现系统的总体效果只提升了 1%,这意味着,我们的字符切分部分可能已经足够好了。
最后我们手工选择数据,让字符分类输出的结果 100%正确,系统的总体效果又提升了10%,这意味着我们可能也会应该投入更多的时间和精力来提高应用的总体表现。
机器学习吴恩达第十周