高数打卡05

f(x)设函数f(x)连续且恒大于零,
F(t)=Ω(t)f(x2+y2+z2)dvD(t)f(x2+y2)dσ\begin{aligned} &F(t)=\frac{\iiint_{\Omega(t)} f\left(x^{2}+y^{2}+z^{2}\right) d v}{\iiint_{D(t)} f\left(x^{2}+y^{2}\right) d \sigma}\\ \end{aligned}
G(t)=D(t)f(x2+y2)dσttf(x2)dx\begin{aligned} G(t)=\frac{\iint_{D(t)} f\left(x^{2}+y^{2}\right) d \sigma}{\int_{-t}^{t} f\left(x^{2}\right) d x} \end{aligned}
Ω(t)={(x,y,z)x2+y2+z2t2},D(t)={(x,y)x2+y2t2}.其中\Omega(t)=\{(x,y,z)|x^2+y^2+z^2 \leq t^2\},D(t)=\{(x,y)|x^2+y^2 \leq t^2\}.
(1)F(t)(0,+)(1)讨论F(t)在区间(0,+\infty)内的 单调性;
(2)t>0F(t)>2πG(t).(2)证明当t>0时,F(t)>\frac{2}{\pi}G(t).
高数打卡05
高数打卡05